Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:9930,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=12858,TotalCases=2093,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_6158_1.vcf.gz --id UKB-b:9930 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_6158_1.txt.gz --cohort_cases 2093 --cohort_controls 12858 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-13T01:56:18.353620",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-9930/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-9930/UKB-b-9930_raw.vcf.gz; Date=Thu Oct 17 12:23:16 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-9930/ukb-b-9930.vcf.gz; Date=Sat May  9 17:01:17 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-9930/UKB-b-9930_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-9930/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:43:13 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-9930/UKB-b-9930_data.vcf.gz ...
Read summary statistics for 3290637 SNPs.
Dropped 478 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 810580 SNPs remain.
After merging with regression SNP LD, 810580 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0569 (0.0355)
Lambda GC: 1.0328
Mean Chi^2: 1.0338
Intercept: 1.0148 (0.0088)
Ratio: 0.4367 (0.2604)
Analysis finished at Thu Oct 17 14:44:09 2019
Total time elapsed: 56.61s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.8385,
    "inflation_factor": 1.0475,
    "mean_EFFECT": 0,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 26341,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 810580,
    "ldsc_nsnp_merge_regression_ld": 810580,
    "ldsc_observed_scale_h2_beta": 0.0569,
    "ldsc_observed_scale_h2_se": 0.0355,
    "ldsc_intercept_beta": 1.0148,
    "ldsc_intercept_se": 0.0088,
    "ldsc_lambda_gc": 1.0328,
    "ldsc_mean_chisq": 1.0338,
    "ldsc_ratio": 0.4379
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 3290162 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 3290637 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.659936e+00 5.772228e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▃▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.856372e+07 5.673305e+07 828.0000000 3.159068e+07 6.894377e+07 1.147905e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 4.480000e-05 4.557500e-03 -0.0263572 -3.001900e-03 6.170000e-05 3.088700e-03 2.716280e-02 ▁▂▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 4.456900e-03 4.087000e-04 0.0038457 4.101900e-03 4.330300e-03 4.745200e-03 9.593600e-03 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.937012e-01 2.900531e-01 0.0000023 2.399999e-01 4.899999e-01 7.400005e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.937022e-01 2.900295e-01 0.0000023 2.417012e-01 4.915281e-01 7.445416e-01 9.999996e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 4.235674e-01 1.872977e-01 0.1672250 2.593540e-01 3.883180e-01 5.680110e-01 8.327750e-01 ▇▆▅▃▂
numeric AF_reference 26341 0.9919952 NA NA NA NA NA NA NA 4.089898e-01 1.994693e-01 0.0000000 2.472040e-01 3.807910e-01 5.551120e-01 1.000000e+00 ▃▇▆▃▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C -0.0080041 0.0071516 0.2599998 0.2630510 0.621207 0.7821490 NA
1 54676 rs2462492 C T 0.0141591 0.0071164 0.0470002 0.0466308 0.399983 NA NA
1 91536 rs6702460 G T 0.0068899 0.0070098 0.3300000 0.3256610 0.455967 0.4207270 NA
1 534192 rs6680723 C T 0.0054763 0.0078844 0.4899999 0.4873215 0.242887 NA NA
1 706368 rs55727773 A G 0.0052293 0.0049613 0.2900000 0.2918746 0.514509 0.2751600 NA
1 763394 rs369924889 G A -0.0101078 0.0057735 0.0800000 0.0799936 0.707462 0.6176120 NA
1 768253 rs2977608 A C 0.0033827 0.0047244 0.4700002 0.4739892 0.757696 0.4894170 NA
1 776546 rs12124819 A G -0.0010602 0.0053114 0.8400000 0.8417786 0.263472 0.0756789 NA
1 798400 rs10900604 A G -0.0046028 0.0050374 0.3599996 0.3608692 0.209055 0.4105430 NA
1 798959 rs11240777 G A -0.0046293 0.0050397 0.3599996 0.3583163 0.208909 0.4099440 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51182485 rs6009961 A G 0.0043836 0.0046701 0.3500000 0.3479179 0.716355 0.6383790 NA
22 51186143 rs2879914 T C 0.0008236 0.0043125 0.8499999 0.8485449 0.384677 0.2733630 NA
22 51186228 rs3865766 C T 0.0022640 0.0042101 0.5900000 0.5907491 0.453659 0.4532750 NA
22 51192586 rs5771006 G A -0.0072025 0.0056721 0.2000000 0.2041573 0.168849 0.0848642 NA
22 51193227 rs34608236 T G 0.0044477 0.0058077 0.4400003 0.4437811 0.167900 0.0692891 NA
22 51197266 rs61290853 A G -0.0004334 0.0043460 0.9199999 0.9205714 0.388724 0.4229230 NA
22 51198027 rs34939255 A G 0.0050139 0.0049472 0.3100002 0.3108328 0.252300 0.0984425 NA
22 51211106 rs9628250 T C 0.0056054 0.0048741 0.2500000 0.2501336 0.270853 0.1671330 NA
22 51212875 rs2238837 A C -0.0012040 0.0046272 0.7899998 0.7947170 0.333067 0.3724040 NA
22 51237063 rs3896457 T C -0.0038927 0.0047211 0.4100001 0.4096397 0.300574 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.621207 ES:SE:LP:AF:ID  -0.00800409:0.00715156:0.585027:0.621207:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.399983 ES:SE:LP:AF:ID  0.0141591:0.00711642:1.3279:0.399983:rs2462492
1   91536   rs6702460   G   T   .   PASS    AF=0.455967 ES:SE:LP:AF:ID  0.00688988:0.00700981:0.481486:0.455967:rs6702460
1   534192  rs6680723   C   T   .   PASS    AF=0.242887 ES:SE:LP:AF:ID  0.00547631:0.0078844:0.309804:0.242887:rs6680723
1   706368  rs12029736  A   G   .   PASS    AF=0.514509 ES:SE:LP:AF:ID  0.00522929:0.00496129:0.537602:0.514509:rs12029736
1   763394  rs3115847   G   A   .   PASS    AF=0.707462 ES:SE:LP:AF:ID  -0.0101078:0.0057735:1.09691:0.707462:rs3115847
1   768253  rs2977608   A   C   .   PASS    AF=0.757696 ES:SE:LP:AF:ID  0.00338268:0.00472439:0.327902:0.757696:rs2977608
1   776546  rs12124819  A   G   .   PASS    AF=0.263472 ES:SE:LP:AF:ID  -0.00106025:0.00531137:0.0757207:0.263472:rs12124819
1   798400  rs10900604  A   G   .   PASS    AF=0.209055 ES:SE:LP:AF:ID  -0.00460276:0.00503744:0.443698:0.209055:rs10900604
1   798959  rs11240777  G   A   .   PASS    AF=0.208909 ES:SE:LP:AF:ID  -0.00462934:0.00503968:0.443698:0.208909:rs11240777
1   808631  rs11240779  G   A   .   PASS    AF=0.769231 ES:SE:LP:AF:ID  0.00374882:0.00478279:0.366532:0.769231:rs11240779
1   808928  rs11240780  C   T   .   PASS    AF=0.769373 ES:SE:LP:AF:ID  0.00450013:0.00478817:0.455932:0.769373:rs11240780
1   814495  rs74461805  C   A   .   PASS    AF=0.338958 ES:SE:LP:AF:ID  0.000235787:0.00682306:0.0132283:0.338958:rs74461805
1   830181  rs28444699  A   G   .   PASS    AF=0.693535 ES:SE:LP:AF:ID  0.0044968:0.00456118:0.49485:0.693535:rs28444699
1   831489  rs4970385   C   T   .   PASS    AF=0.701616 ES:SE:LP:AF:ID  0.0045772:0.00447169:0.508638:0.701616:rs4970385
1   831909  rs9697642   C   T   .   PASS    AF=0.70166  ES:SE:LP:AF:ID  0.00454882:0.00447134:0.508638:0.70166:rs9697642
1   832066  rs9697380   G   C   .   PASS    AF=0.70186  ES:SE:LP:AF:ID  0.00459969:0.00447068:0.522879:0.70186:rs9697380
1   832318  rs4500250   C   A   .   PASS    AF=0.701869 ES:SE:LP:AF:ID  0.00458983:0.00447107:0.522879:0.701869:rs4500250
1   832398  rs4553118   T   C   .   PASS    AF=0.728283 ES:SE:LP:AF:ID  0.00532209:0.00459174:0.60206:0.728283:rs4553118
1   832918  rs28765502  T   C   .   PASS    AF=0.298258 ES:SE:LP:AF:ID  -0.00452876:0.00447149:0.508638:0.298258:rs28765502
1   833223  rs13303211  C   T   .   PASS    AF=0.237765 ES:SE:LP:AF:ID  -0.00590417:0.0047777:0.657577:0.237765:rs13303211
1   833302  rs28752186  C   T   .   PASS    AF=0.237782 ES:SE:LP:AF:ID  -0.00591381:0.00477729:0.657577:0.237782:rs28752186
1   833641  rs28594623  T   C   .   PASS    AF=0.240995 ES:SE:LP:AF:ID  -0.00456758:0.00475283:0.468521:0.240995:rs28594623
1   833824  rs28484835  T   C   .   PASS    AF=0.237791 ES:SE:LP:AF:ID  -0.00589895:0.0047773:0.657577:0.237791:rs28484835
1   833927  rs28593608  T   C   .   PASS    AF=0.211653 ES:SE:LP:AF:ID  -0.00714434:0.00495999:0.823909:0.211653:rs28593608
1   834198  rs28385272  T   C   .   PASS    AF=0.211642 ES:SE:LP:AF:ID  -0.00713307:0.00495939:0.823909:0.211642:rs28385272
1   834832  rs4411087   G   C   .   PASS    AF=0.238134 ES:SE:LP:AF:ID  -0.00589975:0.00477503:0.657577:0.238134:rs4411087
1   834928  rs4422949   A   G   .   PASS    AF=0.212231 ES:SE:LP:AF:ID  -0.00708323:0.00495239:0.823909:0.212231:rs4422949
1   834999  rs28570054  G   A   .   PASS    AF=0.212213 ES:SE:LP:AF:ID  -0.00689343:0.00495332:0.79588:0.212213:rs28570054
1   835499  rs4422948   A   G   .   PASS    AF=0.242207 ES:SE:LP:AF:ID  -0.00641393:0.0047415:0.744727:0.242207:rs4422948
1   836529  rs28731045  C   G   .   PASS    AF=0.212687 ES:SE:LP:AF:ID  -0.00706523:0.00494734:0.823909:0.212687:rs28731045
1   836896  rs28705752  T   C   .   PASS    AF=0.27104  ES:SE:LP:AF:ID  -0.00547067:0.00455215:0.638272:0.27104:rs28705752
1   836924  rs72890788  G   A   .   PASS    AF=0.212655 ES:SE:LP:AF:ID  -0.00703764:0.00494805:0.823909:0.212655:rs72890788
1   838387  rs4970384   T   C   .   PASS    AF=0.214028 ES:SE:LP:AF:ID  -0.00765897:0.0049342:0.920819:0.214028:rs4970384
1   838555  rs4970383   C   A   .   PASS    AF=0.246288 ES:SE:LP:AF:ID  -0.00658674:0.0046727:0.79588:0.246288:rs4970383
1   839103  rs28562941  A   G   .   PASS    AF=0.271405 ES:SE:LP:AF:ID  -0.00554513:0.00455687:0.657577:0.271405:rs28562941
1   840753  rs4970382   T   C   .   PASS    AF=0.399164 ES:SE:LP:AF:ID  -0.00503543:0.00409096:0.657577:0.399164:rs4970382
1   841085  rs1574243   C   G   .   PASS    AF=0.237782 ES:SE:LP:AF:ID  -0.00794398:0.00475728:1.02228:0.237782:rs1574243
1   842013  rs7419119   T   G   .   PASS    AF=0.214375 ES:SE:LP:AF:ID  -0.00799509:0.0049338:0.958607:0.214375:rs7419119
1   842362  rs28540380  C   T   .   PASS    AF=0.235345 ES:SE:LP:AF:ID  -0.00698627:0.00485834:0.823909:0.235345:rs28540380
1   843405  rs11516185  A   G   .   PASS    AF=0.360996 ES:SE:LP:AF:ID  0.00175122:0.00510606:0.136677:0.360996:rs11516185
1   844300  rs61769713  C   G   .   PASS    AF=0.819076 ES:SE:LP:AF:ID  -0.00208774:0.00521443:0.161151:0.819076:rs61769713
1   845283  rs7366404   G   T   .   PASS    AF=0.813447 ES:SE:LP:AF:ID  -0.00243423:0.00514994:0.19382:0.813447:rs7366404
1   845635  rs117086422 C   T   .   PASS    AF=0.204001 ES:SE:LP:AF:ID  -0.012414:0.00501006:1.88606:0.204001:rs117086422
1   845938  rs57760052  G   A   .   PASS    AF=0.210102 ES:SE:LP:AF:ID  -0.0108003:0.0049489:1.5376:0.210102:rs57760052
1   846078  rs28612348  C   T   .   PASS    AF=0.19446  ES:SE:LP:AF:ID  -0.0131409:0.0050992:2:0.19446:rs28612348
1   846338  rs4970334   A   G   .   PASS    AF=0.812532 ES:SE:LP:AF:ID  -0.00223987:0.00514484:0.180456:0.812532:rs4970334
1   846398  rs58781670  G   A   .   PASS    AF=0.203322 ES:SE:LP:AF:ID  -0.010076:0.00501308:1.35655:0.203322:rs58781670
1   846489  rs4970333   T   C   .   PASS    AF=0.812657 ES:SE:LP:AF:ID  -0.00197288:0.00514701:0.154902:0.812657:rs4970333
1   846808  rs4475691   C   T   .   PASS    AF=0.196374 ES:SE:LP:AF:ID  -0.011799:0.00508227:1.69897:0.196374:rs4475691