Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:845,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=146226,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_4104.vcf.gz --id UKB-b:845 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_4104.txt.gz --cohort_controls 146226 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-13T02:30:30.844883",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-845/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-845/UKB-b-845_raw.vcf.gz; Date=Thu Oct 17 12:20:49 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-845/ukb-b-845.vcf.gz; Date=Sun May 10 14:51:53 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-845/UKB-b-845_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-845/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:41:40 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-845/UKB-b-845_data.vcf.gz ...
Read summary statistics for 9301974 SNPs.
Dropped 10288 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1287947 SNPs remain.
After merging with regression SNP LD, 1287947 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.2866 (0.0258)
Lambda GC: 1.4208
Mean Chi^2: 1.9526
Intercept: 1.0962 (0.0137)
Ratio: 0.101 (0.0144)
Analysis finished at Thu Oct 17 14:43:22 2019
Total time elapsed: 1.0m:41.41s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9487,
    "inflation_factor": 1.3107,
    "mean_EFFECT": 0.0001,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 210,
    "n_p_sig": 26341,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 111647,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1287947,
    "ldsc_nsnp_merge_regression_ld": 1287947,
    "ldsc_observed_scale_h2_beta": 0.2866,
    "ldsc_observed_scale_h2_se": 0.0258,
    "ldsc_intercept_beta": 1.0962,
    "ldsc_intercept_se": 0.0137,
    "ldsc_lambda_gc": 1.4208,
    "ldsc_mean_chisq": 1.9526,
    "ldsc_ratio": 0.101
}
 

Flags

name value
af_correlation FALSE
inflation_factor TRUE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 9291738 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 9301974 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.635421e+00 5.754200e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▃▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.880990e+07 5.630848e+07 828.0000000 3.250016e+07 6.939227e+07 1.145403e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 5.450000e-05 1.375620e-02 -0.2508050 -5.337200e-03 6.300000e-06 5.365300e-03 3.979770e-01 ▁▇▂▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 9.917500e-03 7.817200e-03 0.0033253 4.007600e-03 6.327700e-03 1.359660e-02 8.359010e-02 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.554452e-01 3.018308e-01 0.0000000 1.800002e-01 4.400003e-01 7.199992e-01 1.000000e+00 ▇▆▆▅▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.554462e-01 3.018064e-01 0.0000000 1.832993e-01 4.400417e-01 7.171574e-01 9.999997e-01 ▇▆▆▅▅
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 2.138806e-01 2.578296e-01 0.0023940 1.754400e-02 9.266250e-02 3.358530e-01 9.976060e-01 ▇▂▁▁▁
numeric AF_reference 111647 0.9879975 NA NA NA NA NA NA NA 2.148773e-01 2.496214e-01 0.0000000 1.477640e-02 1.110220e-01 3.356630e-01 1.000000e+00 ▇▂▁▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C 0.0013373 0.0061350 0.8300000 0.8274494 0.623783 0.7821490 NA
1 54676 rs2462492 C T -0.0047286 0.0060914 0.4400003 0.4375896 0.399281 NA NA
1 86028 rs114608975 T C 0.0001669 0.0097038 0.9900000 0.9862735 0.103822 0.0277556 NA
1 91536 rs6702460 G T 0.0059776 0.0060013 0.3200000 0.3192222 0.456049 0.4207270 NA
1 234313 rs8179466 C T 0.0041304 0.0118588 0.7300002 0.7276193 0.074426 NA NA
1 534192 rs6680723 C T -0.0017018 0.0068542 0.8000000 0.8039091 0.241234 NA NA
1 546697 rs12025928 A G 0.0284612 0.0085103 0.0008200 0.0008248 0.913029 NA NA
1 693731 rs12238997 A G -0.0004824 0.0057231 0.9299999 0.9328283 0.116832 0.1417730 NA
1 705882 rs72631875 G A -0.0196381 0.0083536 0.0189998 0.0187309 0.067746 0.0315495 NA
1 706368 rs55727773 A G -0.0025749 0.0042351 0.5400003 0.5431954 0.515132 0.2751600 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51219006 rs28729663 G A 0.0067674 0.0051514 0.1900002 0.1889460 0.137093 0.2052720 NA
22 51219387 rs9616832 T C 0.0023896 0.0066977 0.7199992 0.7212593 0.072776 0.0654952 NA
22 51219704 rs147475742 G A -0.0057826 0.0089416 0.5199996 0.5178267 0.041651 0.0473243 NA
22 51221190 rs369304721 G A -0.0030358 0.0089605 0.7300002 0.7347672 0.049132 NA NA
22 51221731 rs115055839 T C 0.0026374 0.0067028 0.6899999 0.6939696 0.072255 0.0625000 NA
22 51222100 rs114553188 G T 0.0062896 0.0078519 0.4199997 0.4231128 0.054400 0.0880591 NA
22 51223637 rs375798137 G A 0.0067847 0.0078927 0.3900004 0.3900007 0.054006 0.0788738 NA
22 51229805 rs9616985 T C 0.0029444 0.0067270 0.6600001 0.6616077 0.072125 0.0730831 NA
22 51232488 rs376461333 A G 0.0089495 0.0157635 0.5700002 0.5702145 0.020154 NA NA
22 51237063 rs3896457 T C -0.0060940 0.0040909 0.1400000 0.1363191 0.297636 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.623783 ES:SE:LP:AF:ID  0.00133727:0.006135:0.0809219:0.623783:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.399281 ES:SE:LP:AF:ID  -0.00472861:0.00609145:0.356547:0.399281:rs2462492
1   86028   rs114608975 T   C   .   PASS    AF=0.103822 ES:SE:LP:AF:ID  0.000166949:0.00970382:0.00436481:0.103822:rs114608975
1   91536   rs6702460   G   T   .   PASS    AF=0.456049 ES:SE:LP:AF:ID  0.0059776:0.00600126:0.49485:0.456049:rs6702460
1   234313  rs8179466   C   T   .   PASS    AF=0.074426 ES:SE:LP:AF:ID  0.00413035:0.0118588:0.136677:0.074426:rs8179466
1   534192  rs6680723   C   T   .   PASS    AF=0.241234 ES:SE:LP:AF:ID  -0.00170185:0.00685425:0.09691:0.241234:rs6680723
1   546697  rs12025928  A   G   .   PASS    AF=0.913029 ES:SE:LP:AF:ID  0.0284612:0.0085103:3.08619:0.913029:rs12025928
1   693731  rs12238997  A   G   .   PASS    AF=0.116832 ES:SE:LP:AF:ID  -0.000482385:0.00572313:0.0315171:0.116832:rs12238997
1   705882  rs72631875  G   A   .   PASS    AF=0.067746 ES:SE:LP:AF:ID  -0.0196381:0.00835364:1.72125:0.067746:rs72631875
1   706368  rs12029736  A   G   .   PASS    AF=0.515132 ES:SE:LP:AF:ID  -0.00257489:0.0042351:0.267606:0.515132:rs12029736
1   714596  rs149887893 T   C   .   PASS    AF=0.033488 ES:SE:LP:AF:ID  0.00465214:0.0105935:0.180456:0.033488:rs149887893
1   715265  rs12184267  C   T   .   PASS    AF=0.037195 ES:SE:LP:AF:ID  0.0039474:0.00961758:0.167491:0.037195:rs12184267
1   715367  rs12184277  A   G   .   PASS    AF=0.037322 ES:SE:LP:AF:ID  0.00349175:0.00957978:0.142668:0.037322:rs12184277
1   717485  rs12184279  C   A   .   PASS    AF=0.036979 ES:SE:LP:AF:ID  0.0019763:0.00965265:0.0757207:0.036979:rs12184279
1   717587  rs144155419 G   A   .   PASS    AF=0.01633  ES:SE:LP:AF:ID  -0.00419657:0.015065:0.107905:0.01633:rs144155419
1   720381  rs116801199 G   T   .   PASS    AF=0.037556 ES:SE:LP:AF:ID  0.00322093:0.00954229:0.130768:0.037556:rs116801199
1   721290  rs12565286  G   C   .   PASS    AF=0.037647 ES:SE:LP:AF:ID  0.00295492:0.00951259:0.119186:0.037647:rs12565286
1   722670  rs116030099 T   C   .   PASS    AF=0.101556 ES:SE:LP:AF:ID  0.0113029:0.00697751:0.958607:0.101556:rs116030099
1   723891  rs2977670   G   C   .   PASS    AF=0.958405 ES:SE:LP:AF:ID  -0.0060247:0.00917787:0.29243:0.958405:rs2977670
1   724849  rs12126395  C   A   .   PASS    AF=0.03177  ES:SE:LP:AF:ID  -0.0143706:0.0167217:0.408935:0.03177:rs12126395
1   725060  rs865924913 A   T   .   PASS    AF=0.052678 ES:SE:LP:AF:ID  -0.0108612:0.0135354:0.376751:0.052678:rs865924913
1   726794  rs28454925  C   G   .   PASS    AF=0.03713  ES:SE:LP:AF:ID  0.0043931:0.00957752:0.187087:0.03713:rs28454925
1   729632  rs116720794 C   T   .   PASS    AF=0.037443 ES:SE:LP:AF:ID  0.00237394:0.0094941:0.09691:0.037443:rs116720794
1   729679  rs4951859   C   G   .   PASS    AF=0.84215  ES:SE:LP:AF:ID  -1.41858e-05:0.00495356:-0:0.84215:rs4951859
1   730087  rs148120343 T   C   .   PASS    AF=0.056062 ES:SE:LP:AF:ID  -0.00736916:0.00804259:0.443698:0.056062:rs148120343
1   731718  rs58276399  T   C   .   PASS    AF=0.122752 ES:SE:LP:AF:ID  -0.000545313:0.00543193:0.0362122:0.122752:rs58276399
1   732989  rs369030935 C   T   .   PASS    AF=0.025686 ES:SE:LP:AF:ID  -0.00712583:0.0133693:0.229148:0.025686:rs369030935
1   734349  rs141242758 T   C   .   PASS    AF=0.121975 ES:SE:LP:AF:ID  -0.00109727:0.0054346:0.0757207:0.121975:rs141242758
1   736289  rs79010578  T   A   .   PASS    AF=0.133228 ES:SE:LP:AF:ID  -0.00109533:0.00534529:0.0757207:0.133228:rs79010578
1   736689  rs181876450 T   C   .   PASS    AF=0.011238 ES:SE:LP:AF:ID  0.00442306:0.0193699:0.0861861:0.011238:rs181876450
1   740284  rs61770167  C   T   .   PASS    AF=0.005839 ES:SE:LP:AF:ID  0.0315442:0.0247554:0.69897:0.005839:rs61770167
1   752478  rs146277091 G   A   .   PASS    AF=0.037388 ES:SE:LP:AF:ID  0.00231074:0.00939693:0.091515:0.037388:rs146277091
1   752566  rs3094315   G   A   .   PASS    AF=0.837789 ES:SE:LP:AF:ID  -0.00159831:0.00479418:0.130768:0.837789:rs3094315
1   752721  rs3131972   A   G   .   PASS    AF=0.837406 ES:SE:LP:AF:ID  -0.00163964:0.00478862:0.136677:0.837406:rs3131972
1   753405  rs3115860   C   A   .   PASS    AF=0.869058 ES:SE:LP:AF:ID  -0.00279532:0.0051406:0.229148:0.869058:rs3115860
1   753541  rs2073813   G   A   .   PASS    AF=0.130635 ES:SE:LP:AF:ID  0.00279398:0.00515082:0.229148:0.130635:rs2073813
1   754063  rs12184312  G   T   .   PASS    AF=0.037882 ES:SE:LP:AF:ID  0.00459093:0.0092428:0.207608:0.037882:rs12184312
1   754105  rs12184325  C   T   .   PASS    AF=0.03814  ES:SE:LP:AF:ID  0.00509071:0.00918346:0.236572:0.03814:rs12184325
1   754182  rs3131969   A   G   .   PASS    AF=0.868393 ES:SE:LP:AF:ID  -0.00297494:0.00513034:0.251812:0.868393:rs3131969
1   754192  rs3131968   A   G   .   PASS    AF=0.868495 ES:SE:LP:AF:ID  -0.00311482:0.00513233:0.267606:0.868495:rs3131968
1   754211  rs12184313  G   A   .   PASS    AF=0.038064 ES:SE:LP:AF:ID  0.00476086:0.00922427:0.21467:0.038064:rs12184313
1   754334  rs3131967   T   C   .   PASS    AF=0.868386 ES:SE:LP:AF:ID  -0.00295307:0.00513:0.251812:0.868386:rs3131967
1   754433  rs150578204 G   A   .   PASS    AF=0.005181 ES:SE:LP:AF:ID  0.025613:0.0262687:0.481486:0.005181:rs150578204
1   754458  rs142682604 G   T   .   PASS    AF=0.005152 ES:SE:LP:AF:ID  0.0253848:0.0263248:0.481486:0.005152:rs142682604
1   754503  rs3115859   G   A   .   PASS    AF=0.8369   ES:SE:LP:AF:ID  -0.00204238:0.00477643:0.173925:0.8369:rs3115859
1   754629  rs10454459  A   G   .   PASS    AF=0.038074 ES:SE:LP:AF:ID  0.00492115:0.00923682:0.229148:0.038074:rs10454459
1   754964  rs3131966   C   T   .   PASS    AF=0.837533 ES:SE:LP:AF:ID  -0.00181568:0.00478978:0.154902:0.837533:rs3131966
1   755240  rs181660517 T   G   .   PASS    AF=0.013254 ES:SE:LP:AF:ID  0.00840105:0.0171247:0.207608:0.013254:rs181660517
1   755435  rs184270342 T   G   .   PASS    AF=0.005491 ES:SE:LP:AF:ID  -0.024114:0.0259476:0.455932:0.005491:rs184270342
1   755775  rs3131965   A   G   .   PASS    AF=0.838766 ES:SE:LP:AF:ID  -0.00183643:0.00485577:0.148742:0.838766:rs3131965