Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:4575,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=47222,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_3786.vcf.gz --id UKB-b:4575 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_3786.txt.gz --cohort_controls 47222 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-13T03:45:58.306965",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-4575/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-4575/UKB-b-4575_raw.vcf.gz; Date=Thu Oct 17 12:43:23 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-4575/ukb-b-4575.vcf.gz; Date=Sat May  9 21:20:23 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-4575/UKB-b-4575_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-4575/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:44:29 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-4575/UKB-b-4575_data.vcf.gz ...
Read summary statistics for 8157623 SNPs.
Dropped 6415 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1283558 SNPs remain.
After merging with regression SNP LD, 1283558 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.1246 (0.0227)
Lambda GC: 1.0891
Mean Chi^2: 1.1375
Intercept: 1.0192 (0.0075)
Ratio: 0.1395 (0.0547)
Analysis finished at Thu Oct 17 14:46:04 2019
Total time elapsed: 1.0m:34.63s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9438,
    "inflation_factor": 1.0966,
    "mean_EFFECT": -0.0001,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 23,
    "n_p_sig": 2938,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 76404,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1283558,
    "ldsc_nsnp_merge_regression_ld": 1283558,
    "ldsc_observed_scale_h2_beta": 0.1246,
    "ldsc_observed_scale_h2_se": 0.0227,
    "ldsc_intercept_beta": 1.0192,
    "ldsc_intercept_se": 0.0075,
    "ldsc_lambda_gc": 1.0891,
    "ldsc_mean_chisq": 1.1375,
    "ldsc_ratio": 0.1396
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.000000 3 58 0 8151237 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 8157623 0.000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.000000 NA NA NA NA NA NA NA 8.658613e+00 5.763276e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.000000 NA NA NA NA NA NA NA 7.871586e+07 5.639266e+07 828.0000000 3.230104e+07 6.920076e+07 1.145308e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.000000 NA NA NA NA NA NA NA -8.990000e-05 1.715200e-02 -0.2536110 -7.841700e-03 -1.970000e-05 7.737500e-03 1.894700e-01 ▁▁▇▂▁
numeric SE 0 1.000000 NA NA NA NA NA NA NA 1.419870e-02 8.839800e-03 0.0062397 7.262300e-03 1.025330e-02 1.881170e-02 7.765500e-02 ▇▂▁▁▁
numeric PVAL 0 1.000000 NA NA NA NA NA NA NA 4.885971e-01 2.921033e-01 0.0000000 2.300001e-01 4.799997e-01 7.400005e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.000000 NA NA NA NA NA NA NA 4.885990e-01 2.920791e-01 0.0000000 2.336488e-01 4.846529e-01 7.416124e-01 9.999999e-01 ▇▇▇▇▇
numeric AF 0 1.000000 NA NA NA NA NA NA NA 2.412052e-01 2.605040e-01 0.0074120 3.253600e-02 1.305240e-01 3.823320e-01 9.925880e-01 ▇▂▂▁▁
numeric AF_reference 76404 0.990634 NA NA NA NA NA NA NA 2.405861e-01 2.523642e-01 0.0000000 3.334660e-02 1.461660e-01 3.775960e-01 1.000000e+00 ▇▂▂▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C 0.0004629 0.0114943 0.9699999 0.9678780 0.624220 0.7821490 NA
1 54676 rs2462492 C T 0.0017460 0.0114090 0.8800001 0.8783663 0.399058 NA NA
1 86028 rs114608975 T C -0.0335773 0.0180991 0.0640000 0.0635689 0.104162 0.0277556 NA
1 91536 rs6702460 G T 0.0074087 0.0111995 0.5099998 0.5082774 0.457490 0.4207270 NA
1 234313 rs8179466 C T -0.0040449 0.0218163 0.8499999 0.8529086 0.074903 NA NA
1 534192 rs6680723 C T 0.0108057 0.0128213 0.4000000 0.3993443 0.241453 NA NA
1 546697 rs12025928 A G -0.0194749 0.0158760 0.2200002 0.2199398 0.913187 NA NA
1 693731 rs12238997 A G 0.0155013 0.0107017 0.1499999 0.1474802 0.116531 0.1417730 NA
1 705882 rs72631875 G A 0.0099243 0.0157413 0.5300002 0.5283932 0.067508 0.0315495 NA
1 706368 rs55727773 A G -0.0084555 0.0079443 0.2900000 0.2871698 0.515841 0.2751600 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51219006 rs28729663 G A -0.0058035 0.0095291 0.5400003 0.5425047 0.139841 0.2052720 NA
22 51219387 rs9616832 T C -0.0144992 0.0124139 0.2399999 0.2428144 0.074813 0.0654952 NA
22 51219704 rs147475742 G A -0.0272983 0.0165449 0.0990011 0.0989526 0.042909 0.0473243 NA
22 51221190 rs369304721 G A -0.0185361 0.0165920 0.2599998 0.2639212 0.050396 NA NA
22 51221731 rs115055839 T C -0.0146788 0.0124168 0.2399999 0.2371372 0.074372 0.0625000 NA
22 51222100 rs114553188 G T 0.0037230 0.0145192 0.8000000 0.7976262 0.055035 0.0880591 NA
22 51223637 rs375798137 G A 0.0041962 0.0145781 0.7700005 0.7734666 0.054735 0.0788738 NA
22 51229805 rs9616985 T C -0.0137242 0.0124656 0.2700001 0.2709115 0.074192 0.0730831 NA
22 51232488 rs376461333 A G 0.0149178 0.0290530 0.6100002 0.6076236 0.020493 NA NA
22 51237063 rs3896457 T C 0.0195387 0.0076382 0.0109999 0.0105267 0.297182 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.62422  ES:SE:LP:AF:ID  0.000462874:0.0114943:0.0132283:0.62422:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.399058 ES:SE:LP:AF:ID  0.00174604:0.011409:0.0555173:0.399058:rs2462492
1   86028   rs114608975 T   C   .   PASS    AF=0.104162 ES:SE:LP:AF:ID  -0.0335773:0.0180991:1.19382:0.104162:rs114608975
1   91536   rs6702460   G   T   .   PASS    AF=0.45749  ES:SE:LP:AF:ID  0.00740872:0.0111995:0.29243:0.45749:rs6702460
1   234313  rs8179466   C   T   .   PASS    AF=0.074903 ES:SE:LP:AF:ID  -0.00404493:0.0218163:0.0705811:0.074903:rs8179466
1   534192  rs6680723   C   T   .   PASS    AF=0.241453 ES:SE:LP:AF:ID  0.0108057:0.0128213:0.39794:0.241453:rs6680723
1   546697  rs12025928  A   G   .   PASS    AF=0.913187 ES:SE:LP:AF:ID  -0.0194749:0.015876:0.657577:0.913187:rs12025928
1   693731  rs12238997  A   G   .   PASS    AF=0.116531 ES:SE:LP:AF:ID  0.0155013:0.0107017:0.823909:0.116531:rs12238997
1   705882  rs72631875  G   A   .   PASS    AF=0.067508 ES:SE:LP:AF:ID  0.00992427:0.0157413:0.275724:0.067508:rs72631875
1   706368  rs12029736  A   G   .   PASS    AF=0.515841 ES:SE:LP:AF:ID  -0.00845548:0.00794426:0.537602:0.515841:rs12029736
1   714596  rs149887893 T   C   .   PASS    AF=0.032588 ES:SE:LP:AF:ID  -0.00591817:0.0201067:0.113509:0.032588:rs149887893
1   715265  rs12184267  C   T   .   PASS    AF=0.03589  ES:SE:LP:AF:ID  -0.0026655:0.0183558:0.0555173:0.03589:rs12184267
1   715367  rs12184277  A   G   .   PASS    AF=0.036089 ES:SE:LP:AF:ID  -0.00354872:0.0182572:0.0705811:0.036089:rs12184277
1   717485  rs12184279  C   A   .   PASS    AF=0.035718 ES:SE:LP:AF:ID  -0.00260155:0.0184134:0.05061:0.035718:rs12184279
1   717587  rs144155419 G   A   .   PASS    AF=0.016561 ES:SE:LP:AF:ID  -0.044066:0.0279527:0.958607:0.016561:rs144155419
1   720381  rs116801199 G   T   .   PASS    AF=0.036263 ES:SE:LP:AF:ID  -0.000292169:0.0182065:0.00436481:0.036263:rs116801199
1   721290  rs12565286  G   C   .   PASS    AF=0.036419 ES:SE:LP:AF:ID  0.00163429:0.0181232:0.0315171:0.036419:rs12565286
1   722670  rs116030099 T   C   .   PASS    AF=0.099369 ES:SE:LP:AF:ID  -0.00168637:0.0132514:0.0457575:0.099369:rs116030099
1   723891  rs2977670   G   C   .   PASS    AF=0.95996  ES:SE:LP:AF:ID  -0.00127816:0.0175179:0.0268721:0.95996:rs2977670
1   724849  rs12126395  C   A   .   PASS    AF=0.031325 ES:SE:LP:AF:ID  0.00154624:0.0317091:0.0177288:0.031325:rs12126395
1   725060  rs865924913 A   T   .   PASS    AF=0.053517 ES:SE:LP:AF:ID  0.000153464:0.024756:-0:0.053517:rs865924913
1   726794  rs28454925  C   G   .   PASS    AF=0.03596  ES:SE:LP:AF:ID  0.00217065:0.0182383:0.0409586:0.03596:rs28454925
1   729632  rs116720794 C   T   .   PASS    AF=0.036259 ES:SE:LP:AF:ID  0.00271899:0.0180796:0.0555173:0.036259:rs116720794
1   729679  rs4951859   C   G   .   PASS    AF=0.844407 ES:SE:LP:AF:ID  -0.013338:0.00931324:0.823909:0.844407:rs4951859
1   730087  rs148120343 T   C   .   PASS    AF=0.055784 ES:SE:LP:AF:ID  0.0320168:0.0150434:1.48149:0.055784:rs148120343
1   731718  rs58276399  T   C   .   PASS    AF=0.121894 ES:SE:LP:AF:ID  0.014804:0.0101659:0.823909:0.121894:rs58276399
1   732989  rs369030935 C   T   .   PASS    AF=0.025239 ES:SE:LP:AF:ID  -0.0179707:0.0252947:0.318759:0.025239:rs369030935
1   734349  rs141242758 T   C   .   PASS    AF=0.121256 ES:SE:LP:AF:ID  0.014456:0.0101661:0.79588:0.121256:rs141242758
1   736289  rs79010578  T   A   .   PASS    AF=0.131187 ES:SE:LP:AF:ID  0.0212318:0.0100634:1.45593:0.131187:rs79010578
1   736689  rs181876450 T   C   .   PASS    AF=0.011354 ES:SE:LP:AF:ID  -0.0449146:0.0358755:0.677781:0.011354:rs181876450
1   752478  rs146277091 G   A   .   PASS    AF=0.036084 ES:SE:LP:AF:ID  0.000756927:0.017919:0.0132283:0.036084:rs146277091
1   752566  rs3094315   G   A   .   PASS    AF=0.839967 ES:SE:LP:AF:ID  -0.00393892:0.00900271:0.180456:0.839967:rs3094315
1   752721  rs3131972   A   G   .   PASS    AF=0.83957  ES:SE:LP:AF:ID  -0.00320678:0.00899397:0.142668:0.83957:rs3131972
1   753405  rs3115860   C   A   .   PASS    AF=0.870075 ES:SE:LP:AF:ID  -0.00244907:0.00963318:0.09691:0.870075:rs3115860
1   753541  rs2073813   G   A   .   PASS    AF=0.129767 ES:SE:LP:AF:ID  0.00199169:0.00965313:0.0757207:0.129767:rs2073813
1   754063  rs12184312  G   T   .   PASS    AF=0.036603 ES:SE:LP:AF:ID  -0.00141496:0.0176142:0.0268721:0.036603:rs12184312
1   754105  rs12184325  C   T   .   PASS    AF=0.036849 ES:SE:LP:AF:ID  -0.000719948:0.0175012:0.0132283:0.036849:rs12184325
1   754182  rs3131969   A   G   .   PASS    AF=0.869405 ES:SE:LP:AF:ID  -0.00187484:0.00961764:0.0705811:0.869405:rs3131969
1   754192  rs3131968   A   G   .   PASS    AF=0.869465 ES:SE:LP:AF:ID  -0.00173322:0.00961995:0.0655015:0.869465:rs3131968
1   754211  rs12184313  G   A   .   PASS    AF=0.036799 ES:SE:LP:AF:ID  -0.000959342:0.0175778:0.0177288:0.036799:rs12184313
1   754334  rs3131967   T   C   .   PASS    AF=0.869411 ES:SE:LP:AF:ID  -0.00180031:0.00961725:0.0705811:0.869411:rs3131967
1   754503  rs3115859   G   A   .   PASS    AF=0.839056 ES:SE:LP:AF:ID  -0.00277706:0.0089748:0.119186:0.839056:rs3115859
1   754629  rs10454459  A   G   .   PASS    AF=0.036851 ES:SE:LP:AF:ID  -0.000791121:0.0175955:0.0177288:0.036851:rs10454459
1   754964  rs3131966   C   T   .   PASS    AF=0.839665 ES:SE:LP:AF:ID  -0.00324285:0.00900017:0.142668:0.839665:rs3131966
1   755240  rs181660517 T   G   .   PASS    AF=0.01382  ES:SE:LP:AF:ID  -0.0630862:0.0312632:1.35655:0.01382:rs181660517
1   755775  rs3131965   A   G   .   PASS    AF=0.840798 ES:SE:LP:AF:ID  -0.00276811:0.00911337:0.119186:0.840798:rs3131965
1   755890  rs3115858   A   T   .   PASS    AF=0.869741 ES:SE:LP:AF:ID  -0.00260444:0.00960429:0.102373:0.869741:rs3115858
1   756604  rs3131962   A   G   .   PASS    AF=0.869271 ES:SE:LP:AF:ID  -0.00264954:0.00958167:0.107905:0.869271:rs3131962
1   757640  rs3115853   G   A   .   PASS    AF=0.86831  ES:SE:LP:AF:ID  -0.00294015:0.00956969:0.119186:0.86831:rs3115853
1   757734  rs4951929   C   T   .   PASS    AF=0.869425 ES:SE:LP:AF:ID  -0.00284784:0.00958955:0.113509:0.869425:rs4951929