Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:3389,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=459767,TotalCases=1343,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_41245_1780.vcf.gz --id UKB-b:3389 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_41245_1780.txt.gz --cohort_cases 1343 --cohort_controls 459767 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-13T13:15:43.669334",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-3389/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-3389/UKB-b-3389_raw.vcf.gz; Date=Thu Oct 17 12:41:32 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-3389/ukb-b-3389.vcf.gz; Date=Sat May  9 14:53:53 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-3389/UKB-b-3389_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-3389/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:43:27 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-3389/UKB-b-3389_data.vcf.gz ...
Read summary statistics for 2209735 SNPs.
Dropped 234 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 563221 SNPs remain.
After merging with regression SNP LD, 563221 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0026 (0.0012)
Lambda GC: 1.0431
Mean Chi^2: 1.037
Intercept: 1.0096 (0.0102)
Ratio: 0.2581 (0.2749)
Analysis finished at Thu Oct 17 14:43:56 2019
Total time elapsed: 29.1s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.73,
    "inflation_factor": 1.0475,
    "mean_EFFECT": 1.072e-07,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 17498,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 563221,
    "ldsc_nsnp_merge_regression_ld": 563221,
    "ldsc_observed_scale_h2_beta": 0.0026,
    "ldsc_observed_scale_h2_se": 0.0012,
    "ldsc_intercept_beta": 1.0096,
    "ldsc_intercept_se": 0.0102,
    "ldsc_lambda_gc": 1.0431,
    "ldsc_mean_chisq": 1.037,
    "ldsc_ratio": 0.2595
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 4 58 0 2209503 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 2209735 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.647441e+00 5.765231e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.867576e+07 5.665900e+07 5687.0000000 3.177796e+07 6.918526e+07 1.147898e+08 2.491722e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 1.000000e-07 1.198000e-04 -0.0005526 -8.090000e-05 0.000000e+00 8.140000e-05 5.912000e-04 ▁▂▇▂▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.178000e-04 5.200000e-06 0.0001083 1.136000e-04 1.164000e-04 1.213000e-04 2.282000e-04 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.938395e-01 2.902562e-01 0.0000003 2.399999e-01 4.899999e-01 7.499995e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.938417e-01 2.902318e-01 0.0000003 2.401871e-01 4.905064e-01 7.456765e-01 9.999999e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 4.628342e-01 1.366167e-01 0.2606110 3.428730e-01 4.447540e-01 5.738220e-01 7.393890e-01 ▇▆▅▅▃
numeric AF_reference 17498 0.9920814 NA NA NA NA NA NA NA 4.432839e-01 1.672935e-01 0.0001997 3.130990e-01 4.315100e-01 5.650960e-01 1.000000e+00 ▁▇▇▃▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C -0.0004880 0.0001993 0.0140001 0.0143427 0.623779 0.7821490 NA
1 54676 rs2462492 C T 0.0003007 0.0001975 0.1299999 0.1278401 0.400401 NA NA
1 91536 rs6702460 G T 0.0001037 0.0001944 0.5900000 0.5938620 0.456862 0.4207270 NA
1 706368 rs55727773 A G -0.0001005 0.0001379 0.4700002 0.4659422 0.515668 0.2751600 NA
1 763394 rs369924889 G A -0.0002780 0.0001616 0.0850002 0.0854833 0.706756 0.6176120 NA
1 776546 rs12124819 A G 0.0000734 0.0001474 0.6200004 0.6183954 0.265365 0.0756789 NA
1 814495 rs74461805 C A -0.0002545 0.0001890 0.1800002 0.1782887 0.340385 NA NA
1 830181 rs28444699 A G -0.0000447 0.0001265 0.7199992 0.7237975 0.697214 0.6912940 NA
1 831489 rs4970385 C T -0.0000919 0.0001242 0.4600002 0.4590597 0.705350 0.6491610 NA
1 831909 rs9697642 C T -0.0000906 0.0001242 0.4700002 0.4655919 0.705395 0.6485620 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51174662 rs1858748 T C 0.0000221 0.0001333 0.8700001 0.8685524 0.737440 0.732827 NA
22 51180501 rs5770999 T C 0.0001194 0.0001297 0.3599996 0.3573801 0.713660 0.636981 NA
22 51181919 rs9616825 G C 0.0000601 0.0001291 0.6400000 0.6413011 0.695490 0.619409 NA
22 51182485 rs6009961 A G 0.0001276 0.0001302 0.3300000 0.3267976 0.715505 0.638379 NA
22 51186143 rs2879914 T C -0.0001053 0.0001207 0.3800004 0.3828731 0.381816 0.273363 NA
22 51186228 rs3865766 C T -0.0000439 0.0001176 0.7099994 0.7086970 0.451059 0.453275 NA
22 51197266 rs61290853 A G -0.0000527 0.0001214 0.6600001 0.6642091 0.386346 0.422923 NA
22 51211106 rs9628250 T C 0.0001224 0.0001363 0.3700002 0.3691925 0.271567 0.167133 NA
22 51212875 rs2238837 A C -0.0000601 0.0001295 0.6400000 0.6423638 0.331445 0.372404 NA
22 51237063 rs3896457 T C -0.0001097 0.0001326 0.4100001 0.4082031 0.297972 0.205072 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.623779 ES:SE:LP:AF:ID  -0.000487984:0.000199294:1.85387:0.623779:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.400401 ES:SE:LP:AF:ID  0.00030071:0.000197488:0.886057:0.400401:rs2462492
1   91536   rs6702460   G   T   .   PASS    AF=0.456862 ES:SE:LP:AF:ID  0.000103673:0.000194418:0.229148:0.456862:rs6702460
1   706368  rs12029736  A   G   .   PASS    AF=0.515668 ES:SE:LP:AF:ID  -0.000100525:0.000137876:0.327902:0.515668:rs12029736
1   763394  rs3115847   G   A   .   PASS    AF=0.706756 ES:SE:LP:AF:ID  -0.000277979:0.000161642:1.07058:0.706756:rs3115847
1   776546  rs12124819  A   G   .   PASS    AF=0.265365 ES:SE:LP:AF:ID  7.34063e-05:0.000147365:0.207608:0.265365:rs12124819
1   814495  rs74461805  C   A   .   PASS    AF=0.340385 ES:SE:LP:AF:ID  -0.00025446:0.000189043:0.744727:0.340385:rs74461805
1   830181  rs28444699  A   G   .   PASS    AF=0.697214 ES:SE:LP:AF:ID  -4.46937e-05:0.000126472:0.142668:0.697214:rs28444699
1   831489  rs4970385   C   T   .   PASS    AF=0.70535  ES:SE:LP:AF:ID  -9.19446e-05:0.000124183:0.337242:0.70535:rs4970385
1   831909  rs9697642   C   T   .   PASS    AF=0.705395 ES:SE:LP:AF:ID  -9.06097e-05:0.000124179:0.327902:0.705395:rs9697642
1   832066  rs9697380   G   C   .   PASS    AF=0.70558  ES:SE:LP:AF:ID  -9.1634e-05:0.000124185:0.337242:0.70558:rs9697380
1   832318  rs4500250   C   A   .   PASS    AF=0.705609 ES:SE:LP:AF:ID  -9.19197e-05:0.000124198:0.337242:0.705609:rs4500250
1   832398  rs4553118   T   C   .   PASS    AF=0.730079 ES:SE:LP:AF:ID  -4.53226e-05:0.000127583:0.142668:0.730079:rs4553118
1   832918  rs28765502  T   C   .   PASS    AF=0.294424 ES:SE:LP:AF:ID  9.13795e-05:0.000124192:0.337242:0.294424:rs28765502
1   836896  rs28705752  T   C   .   PASS    AF=0.269537 ES:SE:LP:AF:ID  7.07391e-05:0.000126593:0.236572:0.269537:rs28705752
1   839103  rs28562941  A   G   .   PASS    AF=0.270039 ES:SE:LP:AF:ID  9.07236e-05:0.000126682:0.327902:0.270039:rs28562941
1   840753  rs4970382   T   C   .   PASS    AF=0.400164 ES:SE:LP:AF:ID  9.24539e-05:0.000114551:0.376751:0.400164:rs4970382
1   843405  rs11516185  A   G   .   PASS    AF=0.362585 ES:SE:LP:AF:ID  8.18579e-05:0.000142192:0.251812:0.362585:rs11516185
1   850218  rs6664536   T   A   .   PASS    AF=0.590329 ES:SE:LP:AF:ID  -3.50501e-05:0.000114214:0.119186:0.590329:rs6664536
1   850371  rs6679046   G   T   .   PASS    AF=0.603723 ES:SE:LP:AF:ID  -1.15698e-05:0.000114856:0.0362122:0.603723:rs6679046
1   850780  rs6657440   C   T   .   PASS    AF=0.603947 ES:SE:LP:AF:ID  -3.53132e-06:0.00011484:0.00877392:0.603947:rs6657440
1   852037  rs4970463   G   A   .   PASS    AF=0.589685 ES:SE:LP:AF:ID  -3.77257e-05:0.000114399:0.130768:0.589685:rs4970463
1   852063  rs28436996  G   A   .   PASS    AF=0.589666 ES:SE:LP:AF:ID  -3.76189e-05:0.000114348:0.130768:0.589666:rs28436996
1   852875  rs13303369  C   T   .   PASS    AF=0.607671 ES:SE:LP:AF:ID  -2.11913e-05:0.000115095:0.0705811:0.607671:rs13303369
1   853954  rs1806509   C   A   .   PASS    AF=0.607829 ES:SE:LP:AF:ID  -2.18559e-05:0.00011511:0.0705811:0.607829:rs1806509
1   854777  rs13303019  A   G   .   PASS    AF=0.610322 ES:SE:LP:AF:ID  -1.0531e-05:0.000115223:0.0315171:0.610322:rs13303019
1   854978  rs13303057  A   C   .   PASS    AF=0.603285 ES:SE:LP:AF:ID  -8.03894e-06:0.000114884:0.0268721:0.603285:rs13303057
1   855075  rs6673914   C   G   .   PASS    AF=0.610343 ES:SE:LP:AF:ID  -1.07263e-05:0.000115225:0.0315171:0.610343:rs6673914
1   856099  rs28534711  T   G   .   PASS    AF=0.389932 ES:SE:LP:AF:ID  1.14541e-05:0.000115247:0.0362122:0.389932:rs28534711
1   856108  rs28742275  A   G   .   PASS    AF=0.389916 ES:SE:LP:AF:ID  1.17426e-05:0.000115253:0.0362122:0.389916:rs28742275
1   856476  rs4040605   A   G   .   PASS    AF=0.350359 ES:SE:LP:AF:ID  -3.60704e-05:0.000118404:0.119186:0.350359:rs4040605
1   866893  rs2880024   T   C   .   PASS    AF=0.61053  ES:SE:LP:AF:ID  -1.4249e-05:0.000115874:0.0457575:0.61053:rs2880024
1   868418  rs28546443  C   T   .   PASS    AF=0.297908 ES:SE:LP:AF:ID  -1.22173e-05:0.00012731:0.0362122:0.297908:rs28546443
1   870645  rs28576697  T   C   .   PASS    AF=0.291301 ES:SE:LP:AF:ID  3.55971e-06:0.000126293:0.00877392:0.291301:rs28576697
1   871334  rs4072383   G   T   .   PASS    AF=0.720599 ES:SE:LP:AF:ID  2.6506e-05:0.000125511:0.0809219:0.720599:rs4072383
1   872352  rs1806780   G   C   .   PASS    AF=0.267549 ES:SE:LP:AF:ID  -6.71508e-05:0.000127213:0.221849:0.267549:rs1806780
1   873558  rs1110052   G   T   .   PASS    AF=0.715235 ES:SE:LP:AF:ID  2.59204e-05:0.000124517:0.0757207:0.715235:rs1110052
1   875770  rs4970379   A   G   .   PASS    AF=0.600067 ES:SE:LP:AF:ID  0.000113217:0.000116843:0.481486:0.600067:rs4970379
1   881627  rs2272757   G   A   .   PASS    AF=0.652403 ES:SE:LP:AF:ID  0.000199222:0.000118033:1.04096:0.652403:rs2272757
1   891059  rs13303065  C   T   .   PASS    AF=0.652441 ES:SE:LP:AF:ID  0.000193979:0.000118014:1:0.652441:rs13303065
1   891945  rs13303106  A   G   .   PASS    AF=0.652502 ES:SE:LP:AF:ID  0.000196487:0.000118151:1.01773:0.652502:rs13303106
1   900505  rs28705211  G   C   .   PASS    AF=0.271781 ES:SE:LP:AF:ID  -0.000194693:0.000127725:0.886057:0.271781:rs28705211
1   903245  rs28690976  A   G   .   PASS    AF=0.56696  ES:SE:LP:AF:ID  0.000142551:0.00011736:0.657577:0.56696:rs28690976
1   909073  rs3892467   C   T   .   PASS    AF=0.386684 ES:SE:LP:AF:ID  1.88375e-05:0.000117018:0.0604807:0.386684:rs3892467
1   909238  rs3829740   G   C   .   PASS    AF=0.571429 ES:SE:LP:AF:ID  -1.93015e-05:0.00011333:0.0655015:0.571429:rs3829740
1   910394  rs28477686  C   T   .   PASS    AF=0.324455 ES:SE:LP:AF:ID  -0.00014484:0.000122843:0.619789:0.324455:rs28477686
1   912049  rs7367995   T   C   .   PASS    AF=0.585258 ES:SE:LP:AF:ID  0.000132422:0.000114488:0.60206:0.585258:rs7367995
1   913889  rs2340596   G   A   .   PASS    AF=0.599234 ES:SE:LP:AF:ID  0.000133667:0.000114677:0.619789:0.599234:rs2340596
1   914333  rs13302979  C   G   .   PASS    AF=0.602534 ES:SE:LP:AF:ID  0.000103415:0.000115022:0.431798:0.602534:rs13302979
1   914852  rs13303368  G   C   .   PASS    AF=0.600092 ES:SE:LP:AF:ID  0.00013027:0.000114803:0.585027:0.600092:rs13303368