Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:14157,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=459421,TotalCases=3589,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_41200_W283.vcf.gz --id UKB-b:14157 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_41200_W283.txt.gz --cohort_cases 3589 --cohort_controls 459421 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-12T16:18:01.874231",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-14157/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-14157/UKB-b-14157_raw.vcf.gz; Date=Thu Oct 17 12:30:05 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-14157/ukb-b-14157.vcf.gz; Date=Sun May 10 00:15:26 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-14157/UKB-b-14157_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-14157/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:43:15 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-14157/UKB-b-14157_data.vcf.gz ...
Read summary statistics for 4351988 SNPs.
Dropped 944 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1015740 SNPs remain.
After merging with regression SNP LD, 1015740 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0014 (0.0011)
Lambda GC: 1.0307
Mean Chi^2: 1.032
Intercept: 1.0188 (0.0082)
Ratio: 0.5863 (0.2569)
Analysis finished at Thu Oct 17 14:44:06 2019
Total time elapsed: 50.13s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.8883,
    "inflation_factor": 1.0475,
    "mean_EFFECT": 1.0304e-07,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 35993,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1015740,
    "ldsc_nsnp_merge_regression_ld": 1015740,
    "ldsc_observed_scale_h2_beta": 0.0014,
    "ldsc_observed_scale_h2_se": 0.0011,
    "ldsc_intercept_beta": 1.0188,
    "ldsc_intercept_se": 0.0082,
    "ldsc_lambda_gc": 1.0307,
    "ldsc_mean_chisq": 1.032,
    "ldsc_ratio": 0.5875
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 4351049 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 4351988 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.654099e+00 5.765395e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▃▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.860843e+07 5.672078e+07 828.0000000 3.173188e+07 6.898442e+07 1.147093e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 1.000000e-07 2.256000e-04 -0.0013678 -1.482000e-04 7.000000e-07 1.473000e-04 1.541900e-03 ▁▂▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 2.201000e-04 3.610000e-05 0.0001759 1.889000e-04 2.078000e-04 2.443000e-04 6.434000e-04 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.954957e-01 2.895202e-01 0.0000002 2.399999e-01 4.899999e-01 7.499995e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.954943e-01 2.894923e-01 0.0000002 2.433744e-01 4.941125e-01 7.453258e-01 9.999999e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.792279e-01 2.230962e-01 0.0975210 1.854770e-01 3.250465e-01 5.413920e-01 9.024790e-01 ▇▅▃▂▂
numeric AF_reference 35993 0.9917295 NA NA NA NA NA NA NA 3.698887e-01 2.240499e-01 0.0000000 1.851040e-01 3.236820e-01 5.295530e-01 1.000000e+00 ▇▇▅▃▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C 0.0001418 0.0003237 0.6600001 0.6614428 0.623765 0.7821490 NA
1 54676 rs2462492 C T 0.0000534 0.0003207 0.8700001 0.8677128 0.400401 NA NA
1 86028 rs114608975 T C 0.0013533 0.0005127 0.0083000 0.0083084 0.103556 0.0277556 NA
1 91536 rs6702460 G T -0.0004786 0.0003158 0.1299999 0.1296366 0.456846 0.4207270 NA
1 534192 rs6680723 C T 0.0004233 0.0003607 0.2399999 0.2406060 0.240959 NA NA
1 693731 rs12238997 A G -0.0004119 0.0003023 0.1700000 0.1729804 0.116329 0.1417730 NA
1 706368 rs55727773 A G 0.0002057 0.0002239 0.3599996 0.3583241 0.515645 0.2751600 NA
1 722670 rs116030099 T C -0.0003075 0.0003694 0.4100001 0.4052041 0.101200 0.0413339 NA
1 729679 rs4951859 C G 0.0003005 0.0002620 0.2500000 0.2512894 0.843204 0.6399760 NA
1 731718 rs142557973 T C -0.0004252 0.0002867 0.1400000 0.1380993 0.122312 0.1543530 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51198027 rs34939255 A G -0.0000434 0.0002233 0.8499999 0.8457599 0.254562 0.0984425 NA
22 51208537 rs72619593 G A -0.0000095 0.0002985 0.9699999 0.9745349 0.120735 0.1142170 NA
22 51210289 rs112565862 C T 0.0000803 0.0002973 0.7899998 0.7869813 0.129958 0.1018370 NA
22 51211106 rs9628250 T C -0.0000563 0.0002214 0.8000000 0.7991912 0.271547 0.1671330 NA
22 51211392 rs3888396 T C 0.0001091 0.0002946 0.7099994 0.7110599 0.132638 0.1641370 NA
22 51212875 rs2238837 A C 0.0001539 0.0002104 0.4600002 0.4643300 0.331457 0.3724040 NA
22 51213613 rs34726907 C T 0.0002327 0.0002772 0.4000000 0.4011107 0.127814 0.1727240 NA
22 51216564 rs9616970 T C 0.0002461 0.0002760 0.3700002 0.3725369 0.128328 0.1563500 NA
22 51219006 rs28729663 G A 0.0001846 0.0002701 0.4899999 0.4944038 0.137950 0.2052720 NA
22 51237063 rs3896457 T C -0.0000790 0.0002154 0.7099994 0.7135869 0.297974 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.623765 ES:SE:LP:AF:ID  0.000141765:0.000323722:0.180456:0.623765:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.400401 ES:SE:LP:AF:ID  5.34187e-05:0.000320709:0.0604807:0.400401:rs2462492
1   86028   rs114608975 T   C   .   PASS    AF=0.103556 ES:SE:LP:AF:ID  0.00135328:0.000512747:2.08092:0.103556:rs114608975
1   91536   rs6702460   G   T   .   PASS    AF=0.456846 ES:SE:LP:AF:ID  -0.00047857:0.000315776:0.886057:0.456846:rs6702460
1   534192  rs6680723   C   T   .   PASS    AF=0.240959 ES:SE:LP:AF:ID  0.000423273:0.000360701:0.619789:0.240959:rs6680723
1   693731  rs12238997  A   G   .   PASS    AF=0.116329 ES:SE:LP:AF:ID  -0.000411911:0.000302278:0.769551:0.116329:rs12238997
1   706368  rs12029736  A   G   .   PASS    AF=0.515645 ES:SE:LP:AF:ID  0.000205681:0.000223916:0.443698:0.515645:rs12029736
1   722670  rs116030099 T   C   .   PASS    AF=0.1012   ES:SE:LP:AF:ID  -0.000307514:0.000369447:0.387216:0.1012:rs116030099
1   729679  rs4951859   C   G   .   PASS    AF=0.843204 ES:SE:LP:AF:ID  0.00030053:0.000261963:0.60206:0.843204:rs4951859
1   731718  rs58276399  T   C   .   PASS    AF=0.122312 ES:SE:LP:AF:ID  -0.00042521:0.000286741:0.853872:0.122312:rs58276399
1   734349  rs141242758 T   C   .   PASS    AF=0.121554 ES:SE:LP:AF:ID  -0.000401937:0.000286861:0.79588:0.121554:rs141242758
1   736289  rs79010578  T   A   .   PASS    AF=0.132335 ES:SE:LP:AF:ID  -0.000225245:0.000282731:0.366532:0.132335:rs79010578
1   752566  rs3094315   G   A   .   PASS    AF=0.838945 ES:SE:LP:AF:ID  0.000260409:0.000253694:0.522879:0.838945:rs3094315
1   752721  rs3131972   A   G   .   PASS    AF=0.838573 ES:SE:LP:AF:ID  0.000249907:0.000253421:0.49485:0.838573:rs3131972
1   753405  rs3115860   C   A   .   PASS    AF=0.869776 ES:SE:LP:AF:ID  0.000349135:0.000271929:0.69897:0.869776:rs3115860
1   753541  rs2073813   G   A   .   PASS    AF=0.129876 ES:SE:LP:AF:ID  -0.000347441:0.000272486:0.69897:0.129876:rs2073813
1   754182  rs3131969   A   G   .   PASS    AF=0.869117 ES:SE:LP:AF:ID  0.000349935:0.000271396:0.69897:0.869117:rs3131969
1   754192  rs3131968   A   G   .   PASS    AF=0.869215 ES:SE:LP:AF:ID  0.000344173:0.000271504:0.69897:0.869215:rs3131968
1   754334  rs3131967   T   C   .   PASS    AF=0.869121 ES:SE:LP:AF:ID  0.000349576:0.000271391:0.69897:0.869121:rs3131967
1   754503  rs3115859   G   A   .   PASS    AF=0.838026 ES:SE:LP:AF:ID  0.000251861:0.000252717:0.49485:0.838026:rs3115859
1   754964  rs3131966   C   T   .   PASS    AF=0.838657 ES:SE:LP:AF:ID  0.000266201:0.000253428:0.537602:0.838657:rs3131966
1   755775  rs3131965   A   G   .   PASS    AF=0.83977  ES:SE:LP:AF:ID  0.000226026:0.000256855:0.420216:0.83977:rs3131965
1   755890  rs3115858   A   T   .   PASS    AF=0.8694   ES:SE:LP:AF:ID  0.000328684:0.000271077:0.638272:0.8694:rs3115858
1   756604  rs3131962   A   G   .   PASS    AF=0.868947 ES:SE:LP:AF:ID  0.000330491:0.000270395:0.657577:0.868947:rs3131962
1   757640  rs3115853   G   A   .   PASS    AF=0.867898 ES:SE:LP:AF:ID  0.00034035:0.000269877:0.677781:0.867898:rs3115853
1   757734  rs4951929   C   T   .   PASS    AF=0.86909  ES:SE:LP:AF:ID  0.000328501:0.000270617:0.657577:0.86909:rs4951929
1   757936  rs4951862   C   A   .   PASS    AF=0.869098 ES:SE:LP:AF:ID  0.000328623:0.000270637:0.657577:0.869098:rs4951862
1   758144  rs3131956   A   G   .   PASS    AF=0.869106 ES:SE:LP:AF:ID  0.000328139:0.000270644:0.638272:0.869106:rs3131956
1   758626  rs3131954   C   T   .   PASS    AF=0.869584 ES:SE:LP:AF:ID  0.000337764:0.000271387:0.677781:0.869584:rs3131954
1   760912  rs1048488   C   T   .   PASS    AF=0.838306 ES:SE:LP:AF:ID  0.000258136:0.000252238:0.508638:0.838306:rs1048488
1   761147  rs3115850   T   C   .   PASS    AF=0.838427 ES:SE:LP:AF:ID  0.000257964:0.000252416:0.508638:0.838427:rs3115850
1   761732  rs2286139   C   T   .   PASS    AF=0.862254 ES:SE:LP:AF:ID  0.000313269:0.000269665:0.60206:0.862254:rs2286139
1   763394  rs3115847   G   A   .   PASS    AF=0.706753 ES:SE:LP:AF:ID  0.000190471:0.00026252:0.327902:0.706753:rs3115847
1   766007  rs61768174  A   C   .   PASS    AF=0.105145 ES:SE:LP:AF:ID  -0.000290984:0.000302418:0.468521:0.105145:rs61768174
1   768253  rs2977608   A   C   .   PASS    AF=0.761297 ES:SE:LP:AF:ID  0.000222402:0.000214262:0.522879:0.761297:rs2977608
1   768448  rs12562034  G   A   .   PASS    AF=0.10649  ES:SE:LP:AF:ID  -4.62218e-05:0.000295319:0.0555173:0.10649:rs12562034
1   769223  rs60320384  C   G   .   PASS    AF=0.129581 ES:SE:LP:AF:ID  -0.000316306:0.000272323:0.60206:0.129581:rs60320384
1   771823  rs2977605   T   C   .   PASS    AF=0.868906 ES:SE:LP:AF:ID  0.000338736:0.000270869:0.677781:0.868906:rs2977605
1   771967  rs59066358  G   A   .   PASS    AF=0.129682 ES:SE:LP:AF:ID  -0.000322474:0.000272148:0.619789:0.129682:rs59066358
1   772755  rs2905039   A   C   .   PASS    AF=0.868916 ES:SE:LP:AF:ID  0.000328677:0.000270874:0.657577:0.868916:rs2905039
1   776546  rs12124819  A   G   .   PASS    AF=0.265385 ES:SE:LP:AF:ID  0.000498279:0.000239339:1.4318:0.265385:rs12124819
1   777122  rs2980319   A   T   .   PASS    AF=0.870039 ES:SE:LP:AF:ID  0.00036273:0.000271426:0.744727:0.870039:rs2980319
1   778745  rs1055606   A   G   .   PASS    AF=0.12858  ES:SE:LP:AF:ID  -0.000348318:0.000272498:0.69897:0.12858:rs1055606
1   779322  rs4040617   A   G   .   PASS    AF=0.128877 ES:SE:LP:AF:ID  -0.000348121:0.000272036:0.69897:0.128877:rs4040617
1   780785  rs2977612   T   A   .   PASS    AF=0.86878  ES:SE:LP:AF:ID  0.000339999:0.000270702:0.677781:0.86878:rs2977612
1   781845  rs61768199  A   G   .   PASS    AF=0.101873 ES:SE:LP:AF:ID  -0.000297715:0.000306732:0.481486:0.101873:rs61768199
1   782981  rs6594026   C   T   .   PASS    AF=0.129518 ES:SE:LP:AF:ID  -0.000323187:0.000271948:0.638272:0.129518:rs6594026
1   785050  rs2905062   G   A   .   PASS    AF=0.868533 ES:SE:LP:AF:ID  0.000345567:0.000270639:0.69897:0.868533:rs2905062
1   785989  rs2980300   T   C   .   PASS    AF=0.868474 ES:SE:LP:AF:ID  0.000352616:0.000270808:0.721246:0.868474:rs2980300
1   787399  rs2905055   G   T   .   PASS    AF=0.860776 ES:SE:LP:AF:ID  0.000418222:0.000270623:0.920819:0.860776:rs2905055