Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:12396,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=440727,TotalCases=3484,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_41246_1220.vcf.gz --id UKB-b:12396 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_41246_1220.txt.gz --cohort_cases 3484 --cohort_controls 440727 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-13T13:17:23.661761",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-12396/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-12396/UKB-b-12396_raw.vcf.gz; Date=Thu Oct 17 12:27:12 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-12396/ukb-b-12396.vcf.gz; Date=Sun May 10 04:03:54 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-12396/UKB-b-12396_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-12396/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:41:54 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-12396/UKB-b-12396_data.vcf.gz ...
Read summary statistics for 4299340 SNPs.
Dropped 911 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1006594 SNPs remain.
After merging with regression SNP LD, 1006594 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0032 (0.0011)
Lambda GC: 1.0285
Mean Chi^2: 1.0233
Intercept: 0.9926 (0.0083)
Ratio < 0 (usually indicates GC correction).
Analysis finished at Thu Oct 17 14:42:49 2019
Total time elapsed: 54.76s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.8865,
    "inflation_factor": 1.0475,
    "mean_EFFECT": -5.7251e-07,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 1,
    "n_p_sig": 49,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 35466,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1006594,
    "ldsc_nsnp_merge_regression_ld": 1006594,
    "ldsc_observed_scale_h2_beta": 0.0032,
    "ldsc_observed_scale_h2_se": 0.0011,
    "ldsc_intercept_beta": 0.9926,
    "ldsc_intercept_se": 0.0083,
    "ldsc_lambda_gc": 1.0285,
    "ldsc_mean_chisq": 1.0233,
    "ldsc_ratio": -0.3176
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 4298434 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 4299340 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.654941e+00 5.766001e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▃▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.858711e+07 5.671768e+07 828.0000000 3.170646e+07 6.895824e+07 1.146829e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -6.000000e-07 2.319000e-04 -0.0012259 -1.526000e-04 -1.000000e-06 1.504000e-04 2.868700e-03 ▁▇▁▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 2.249000e-04 3.600000e-05 0.0001806 1.938000e-04 2.127000e-04 2.491000e-04 6.604000e-04 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.947385e-01 2.905840e-01 0.0000000 2.399999e-01 4.899999e-01 7.499995e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.947383e-01 2.905575e-01 0.0000000 2.419276e-01 4.922448e-01 7.464639e-01 1.000000e+00 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.814526e-01 2.216389e-01 0.1004600 1.888730e-01 3.281780e-01 5.430760e-01 8.995400e-01 ▇▅▃▂▂
numeric AF_reference 35466 0.9917508 NA NA NA NA NA NA NA 3.718748e-01 2.230251e-01 0.0000000 1.880990e-01 3.264780e-01 5.311500e-01 1.000000e+00 ▆▇▅▃▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C -0.0006039 0.0003323 0.0690001 0.0691680 0.623754 0.7821490 NA
1 54676 rs2462492 C T 0.0000417 0.0003292 0.9000000 0.8993141 0.400408 NA NA
1 86028 rs114608975 T C 0.0011666 0.0005263 0.0269998 0.0266566 0.103548 0.0277556 NA
1 91536 rs6702460 G T -0.0002298 0.0003241 0.4799997 0.4784128 0.456852 0.4207270 NA
1 534192 rs6680723 C T -0.0003116 0.0003703 0.4000000 0.4001216 0.240900 NA NA
1 693731 rs12238997 A G -0.0003857 0.0003104 0.2099999 0.2140395 0.116358 0.1417730 NA
1 706368 rs55727773 A G 0.0001053 0.0002299 0.6499995 0.6470096 0.515710 0.2751600 NA
1 722670 rs116030099 T C 0.0001687 0.0003793 0.6600001 0.6563683 0.101251 0.0413339 NA
1 729679 rs4951859 C G 0.0004353 0.0002690 0.1100001 0.1056048 0.843130 0.6399760 NA
1 731718 rs142557973 T C -0.0003484 0.0002944 0.2399999 0.2366206 0.122349 0.1543530 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51198027 rs34939255 A G 0.0001206 0.0002293 0.5999997 0.5988104 0.254388 0.0984425 NA
22 51208537 rs72619593 G A 0.0002600 0.0003064 0.4000000 0.3961413 0.120818 0.1142170 NA
22 51210289 rs112565862 C T -0.0001904 0.0003053 0.5300002 0.5327690 0.129933 0.1018370 NA
22 51211106 rs9628250 T C 0.0001120 0.0002273 0.6200004 0.6220880 0.271377 0.1671330 NA
22 51211392 rs3888396 T C -0.0001560 0.0003025 0.6100002 0.6060383 0.132620 0.1641370 NA
22 51212875 rs2238837 A C -0.0000852 0.0002160 0.6899999 0.6931195 0.331635 0.3724040 NA
22 51213613 rs34726907 C T 0.0000339 0.0002844 0.9100000 0.9051703 0.127909 0.1727240 NA
22 51216564 rs9616970 T C 0.0000380 0.0002832 0.8900000 0.8933038 0.128430 0.1563500 NA
22 51219006 rs28729663 G A -0.0000089 0.0002772 0.9699999 0.9742559 0.138032 0.2052720 NA
22 51237063 rs3896457 T C -0.0000532 0.0002211 0.8100000 0.8097078 0.298157 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.623754 ES:SE:LP:AF:ID  -0.000603932:0.00033232:1.16115:0.623754:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.400408 ES:SE:LP:AF:ID  4.16593e-05:0.00032925:0.0457575:0.400408:rs2462492
1   86028   rs114608975 T   C   .   PASS    AF=0.103548 ES:SE:LP:AF:ID  0.00116664:0.000526341:1.56864:0.103548:rs114608975
1   91536   rs6702460   G   T   .   PASS    AF=0.456852 ES:SE:LP:AF:ID  -0.000229767:0.000324137:0.318759:0.456852:rs6702460
1   534192  rs6680723   C   T   .   PASS    AF=0.2409   ES:SE:LP:AF:ID  -0.000311614:0.00037035:0.39794:0.2409:rs6680723
1   693731  rs12238997  A   G   .   PASS    AF=0.116358 ES:SE:LP:AF:ID  -0.000385664:0.000310385:0.677781:0.116358:rs12238997
1   706368  rs12029736  A   G   .   PASS    AF=0.51571  ES:SE:LP:AF:ID  0.000105275:0.000229898:0.187087:0.51571:rs12029736
1   722670  rs116030099 T   C   .   PASS    AF=0.101251 ES:SE:LP:AF:ID  0.000168747:0.000379264:0.180456:0.101251:rs116030099
1   729679  rs4951859   C   G   .   PASS    AF=0.84313  ES:SE:LP:AF:ID  0.000435264:0.000268969:0.958607:0.84313:rs4951859
1   731718  rs58276399  T   C   .   PASS    AF=0.122349 ES:SE:LP:AF:ID  -0.000348407:0.000294393:0.619789:0.122349:rs58276399
1   734349  rs141242758 T   C   .   PASS    AF=0.121591 ES:SE:LP:AF:ID  -0.000351396:0.000294514:0.638272:0.121591:rs141242758
1   736289  rs79010578  T   A   .   PASS    AF=0.132408 ES:SE:LP:AF:ID  -0.000615498:0.000290246:1.46852:0.132408:rs79010578
1   752566  rs3094315   G   A   .   PASS    AF=0.838819 ES:SE:LP:AF:ID  0.000626853:0.000260413:1.79588:0.838819:rs3094315
1   752721  rs3131972   A   G   .   PASS    AF=0.83844  ES:SE:LP:AF:ID  0.000620874:0.000260122:1.76955:0.83844:rs3131972
1   753405  rs3115860   C   A   .   PASS    AF=0.869698 ES:SE:LP:AF:ID  0.000575087:0.000279135:1.40894:0.869698:rs3115860
1   753541  rs2073813   G   A   .   PASS    AF=0.129966 ES:SE:LP:AF:ID  -0.000567979:0.00027969:1.37675:0.129966:rs2073813
1   754182  rs3131969   A   G   .   PASS    AF=0.869038 ES:SE:LP:AF:ID  0.000573907:0.00027858:1.40894:0.869038:rs3131969
1   754192  rs3131968   A   G   .   PASS    AF=0.869138 ES:SE:LP:AF:ID  0.000597136:0.000278693:1.49485:0.869138:rs3131968
1   754334  rs3131967   T   C   .   PASS    AF=0.869041 ES:SE:LP:AF:ID  0.000573027:0.000278575:1.39794:0.869041:rs3131967
1   754503  rs3115859   G   A   .   PASS    AF=0.83789  ES:SE:LP:AF:ID  0.000630976:0.000259399:1.82391:0.83789:rs3115859
1   754964  rs3131966   C   T   .   PASS    AF=0.838522 ES:SE:LP:AF:ID  0.000624524:0.000260128:1.79588:0.838522:rs3131966
1   755775  rs3131965   A   G   .   PASS    AF=0.83964  ES:SE:LP:AF:ID  0.000628104:0.000263661:1.76955:0.83964:rs3131965
1   755890  rs3115858   A   T   .   PASS    AF=0.869327 ES:SE:LP:AF:ID  0.000587247:0.000278268:1.45593:0.869327:rs3115858
1   756604  rs3131962   A   G   .   PASS    AF=0.86888  ES:SE:LP:AF:ID  0.000578077:0.000277581:1.4318:0.86888:rs3131962
1   757640  rs3115853   G   A   .   PASS    AF=0.867823 ES:SE:LP:AF:ID  0.000560177:0.000277031:1.36653:0.867823:rs3115853
1   757734  rs4951929   C   T   .   PASS    AF=0.869019 ES:SE:LP:AF:ID  0.000576905:0.000277802:1.42022:0.869019:rs4951929
1   757936  rs4951862   C   A   .   PASS    AF=0.869027 ES:SE:LP:AF:ID  0.000576534:0.000277824:1.42022:0.869027:rs4951862
1   758144  rs3131956   A   G   .   PASS    AF=0.869035 ES:SE:LP:AF:ID  0.000576016:0.00027783:1.42022:0.869035:rs3131956
1   758626  rs3131954   C   T   .   PASS    AF=0.869511 ES:SE:LP:AF:ID  0.000591045:0.000278584:1.46852:0.869511:rs3131954
1   760912  rs1048488   C   T   .   PASS    AF=0.838176 ES:SE:LP:AF:ID  0.000625629:0.00025892:1.79588:0.838176:rs1048488
1   761147  rs3115850   T   C   .   PASS    AF=0.838296 ES:SE:LP:AF:ID  0.000624146:0.000259103:1.79588:0.838296:rs3115850
1   761732  rs2286139   C   T   .   PASS    AF=0.862179 ES:SE:LP:AF:ID  0.000623056:0.000276836:1.61979:0.862179:rs2286139
1   763394  rs3115847   G   A   .   PASS    AF=0.706668 ES:SE:LP:AF:ID  0.000628568:0.000269517:1.69897:0.706668:rs3115847
1   766007  rs61768174  A   C   .   PASS    AF=0.105168 ES:SE:LP:AF:ID  -0.00050434:0.000310498:1:0.105168:rs61768174
1   768253  rs2977608   A   C   .   PASS    AF=0.761323 ES:SE:LP:AF:ID  0.000269863:0.000220071:0.657577:0.761323:rs2977608
1   768448  rs12562034  G   A   .   PASS    AF=0.106403 ES:SE:LP:AF:ID  0.000157174:0.000303381:0.221849:0.106403:rs12562034
1   769223  rs60320384  C   G   .   PASS    AF=0.129653 ES:SE:LP:AF:ID  -0.000525873:0.000279557:1.22185:0.129653:rs60320384
1   771823  rs2977605   T   C   .   PASS    AF=0.868842 ES:SE:LP:AF:ID  0.000552421:0.000278066:1.3279:0.868842:rs2977605
1   771967  rs59066358  G   A   .   PASS    AF=0.129753 ES:SE:LP:AF:ID  -0.00052439:0.000279375:1.21467:0.129753:rs59066358
1   772755  rs2905039   A   C   .   PASS    AF=0.868852 ES:SE:LP:AF:ID  0.000550012:0.000278072:1.31876:0.868852:rs2905039
1   776546  rs12124819  A   G   .   PASS    AF=0.265279 ES:SE:LP:AF:ID  0.00024698:0.00024578:0.508638:0.265279:rs12124819
1   777122  rs2980319   A   T   .   PASS    AF=0.870001 ES:SE:LP:AF:ID  0.00056304:0.000278659:1.36653:0.870001:rs2980319
1   778745  rs1055606   A   G   .   PASS    AF=0.12862  ES:SE:LP:AF:ID  -0.000523973:0.000279759:1.21467:0.12862:rs1055606
1   779322  rs4040617   A   G   .   PASS    AF=0.128915 ES:SE:LP:AF:ID  -0.000520751:0.000279289:1.20761:0.128915:rs4040617
1   780785  rs2977612   T   A   .   PASS    AF=0.868739 ES:SE:LP:AF:ID  0.000550693:0.000277917:1.31876:0.868739:rs2977612
1   781845  rs61768199  A   G   .   PASS    AF=0.10187  ES:SE:LP:AF:ID  -0.000468046:0.000314959:0.853872:0.10187:rs61768199
1   782981  rs6594026   C   T   .   PASS    AF=0.129565 ES:SE:LP:AF:ID  -0.000527742:0.000279196:1.22915:0.129565:rs6594026
1   785050  rs2905062   G   A   .   PASS    AF=0.868493 ES:SE:LP:AF:ID  0.000551602:0.000277853:1.3279:0.868493:rs2905062
1   785989  rs2980300   T   C   .   PASS    AF=0.868435 ES:SE:LP:AF:ID  0.000546605:0.000278027:1.3098:0.868435:rs2980300
1   787399  rs2905055   G   T   .   PASS    AF=0.860726 ES:SE:LP:AF:ID  0.000554681:0.00027782:1.33724:0.860726:rs2905055