Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=UKB-b:11247,TotalVariants=9851866,VariantsNotRead=0,HarmonisedVariants=9851866,VariantsNotHarmonised=0,SwitchedAlleles=9851866,TotalControls=455759,TotalCases=5378,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=GRCh37>",
    "gwas_harmonisation_command": "--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/vcf_09_19b/bgzip_vcf/data.batch_41245_1080.vcf.gz --id UKB-b:11247 --data /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/raw-output/data.batch_41245_1080.txt.gz --cohort_cases 5378 --cohort_controls 455759 --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/human_g1k_v37.fasta --json /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukbiobank/ukb_gwas.json; 1.1.1",
    "file_date": "2019-09-12T19:13:03.805135",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -T ^/mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-11247/mac_discard.txt -Oz /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-11247/UKB-b-11247_raw.vcf.gz; Date=Thu Oct 17 12:25:08 2019",
    "bcftools_viewCommand.1": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ukb-b-11247/ukb-b-11247.vcf.gz; Date=Sun May 10 13:02:33 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-11247/UKB-b-11247_data.vcf.gz \
--ref-ld-chr ../reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-11247/ldsc.txt \
--w-ld-chr ../reference/eur_w_ld_chr/ 

Beginning analysis at Thu Oct 17 14:40:19 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/UKB-b-11247/UKB-b-11247_data.vcf.gz ...
Read summary statistics for 5019473 SNPs.
Dropped 1448 SNPs with duplicated rs numbers.
Reading reference panel LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from ../reference/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1118131 SNPs remain.
After merging with regression SNP LD, 1118131 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0055 (0.0011)
Lambda GC: 1.0545
Mean Chi^2: 1.0631
Intercept: 1.0114 (0.0077)
Ratio: 0.1815 (0.1222)
Analysis finished at Thu Oct 17 14:41:16 2019
Total time elapsed: 56.69s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9069,
    "inflation_factor": 1.0475,
    "mean_EFFECT": 3.8399e-07,
    "n": "-Inf",
    "n_snps": 9851866,
    "n_clumped_hits": 3,
    "n_p_sig": 153,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 42898,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1118131,
    "ldsc_nsnp_merge_regression_ld": 1118131,
    "ldsc_observed_scale_h2_beta": 0.0055,
    "ldsc_observed_scale_h2_se": 0.0011,
    "ldsc_intercept_beta": 1.0114,
    "ldsc_intercept_se": 0.0077,
    "ldsc_lambda_gc": 1.0545,
    "ldsc_mean_chisq": 1.0631,
    "ldsc_ratio": 0.1807
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 5018036 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 5019473 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.669032e+00 5.765828e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.856802e+07 5.663521e+07 828.0000000 3.188530e+07 6.896582e+07 1.145980e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 4.000000e-07 3.049000e-04 -0.0021752 -1.932000e-04 1.000000e-07 1.926000e-04 3.766800e-03 ▁▇▂▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 2.888000e-04 6.500000e-05 0.0002153 2.337000e-04 2.655000e-04 3.303000e-04 8.177000e-04 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.913366e-01 2.910561e-01 0.0000000 2.399999e-01 4.899999e-01 7.400005e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.913360e-01 2.910291e-01 0.0000000 2.376490e-01 4.887069e-01 7.431095e-01 9.999995e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.509482e-01 2.387144e-01 0.0650800 1.453660e-01 2.851450e-01 5.174210e-01 9.349200e-01 ▇▅▃▂▂
numeric AF_reference 42898 0.9914537 NA NA NA NA NA NA NA 3.443878e-01 2.353838e-01 0.0000000 1.501600e-01 2.875400e-01 5.067890e-01 1.000000e+00 ▇▇▅▃▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C 0.0004953 0.0003962 0.2099999 0.2112956 0.623777 0.7821490 NA
1 54676 rs2462492 C T -0.0003751 0.0003926 0.3400001 0.3394226 0.400402 NA NA
1 86028 rs114608975 T C -0.0000095 0.0006277 0.9900000 0.9879142 0.103551 0.0277556 NA
1 91536 rs6702460 G T 0.0000714 0.0003865 0.8499999 0.8534169 0.456858 0.4207270 NA
1 234313 rs8179466 C T 0.0005389 0.0007620 0.4799997 0.4794302 0.074516 NA NA
1 534192 rs6680723 C T 0.0002002 0.0004415 0.6499995 0.6501824 0.240944 NA NA
1 546697 rs12025928 A G -0.0002341 0.0005508 0.6700003 0.6707661 0.913468 NA NA
1 693731 rs12238997 A G 0.0000500 0.0003701 0.8900000 0.8924802 0.116327 0.1417730 NA
1 705882 rs72631875 G A -0.0003607 0.0005422 0.5099998 0.5058571 0.067307 0.0315495 NA
1 706368 rs55727773 A G 0.0000999 0.0002741 0.7199992 0.7155779 0.515674 0.2751600 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51213613 rs34726907 C T -0.0001063 0.0003393 0.7499995 0.7540912 0.127818 0.1727240 NA
22 51216564 rs9616970 T C -0.0000656 0.0003378 0.8499999 0.8461207 0.128329 0.1563500 NA
22 51217954 rs9616974 G A 0.0003442 0.0004286 0.4199997 0.4219492 0.073306 0.0621006 NA
22 51218224 rs9616975 C A 0.0003669 0.0004288 0.3900004 0.3921984 0.073326 0.0619010 NA
22 51218377 rs2519461 G C 0.0003705 0.0004283 0.3900004 0.3869556 0.073614 0.0826677 NA
22 51219006 rs28729663 G A 0.0000206 0.0003306 0.9500000 0.9503249 0.137952 0.2052720 NA
22 51219387 rs9616832 T C 0.0003257 0.0004292 0.4500005 0.4479409 0.073739 0.0654952 NA
22 51221731 rs115055839 T C 0.0003953 0.0004294 0.3599996 0.3572718 0.073228 0.0625000 NA
22 51229805 rs9616985 T C 0.0003898 0.0004310 0.3700002 0.3657971 0.073066 0.0730831 NA
22 51237063 rs3896457 T C 0.0004659 0.0002636 0.0769999 0.0771758 0.297976 0.2050720 NA

bcf preview

1   49298   rs10399793  T   C   .   PASS    AF=0.623777 ES:SE:LP:AF:ID  0.000495293:0.000396231:0.677781:0.623777:rs10399793
1   54676   rs2462492   C   T   .   PASS    AF=0.400402 ES:SE:LP:AF:ID  -0.000375084:0.000392632:0.468521:0.400402:rs2462492
1   86028   rs114608975 T   C   .   PASS    AF=0.103551 ES:SE:LP:AF:ID  -9.50874e-06:0.000627725:0.00436481:0.103551:rs114608975
1   91536   rs6702460   G   T   .   PASS    AF=0.456858 ES:SE:LP:AF:ID  7.14166e-05:0.000386536:0.0705811:0.456858:rs6702460
1   234313  rs8179466   C   T   .   PASS    AF=0.074516 ES:SE:LP:AF:ID  0.000538933:0.000762045:0.318759:0.074516:rs8179466
1   534192  rs6680723   C   T   .   PASS    AF=0.240944 ES:SE:LP:AF:ID  0.000200245:0.000441546:0.187087:0.240944:rs6680723
1   546697  rs12025928  A   G   .   PASS    AF=0.913468 ES:SE:LP:AF:ID  -0.000234148:0.000550811:0.173925:0.913468:rs12025928
1   693731  rs12238997  A   G   .   PASS    AF=0.116327 ES:SE:LP:AF:ID  5.00185e-05:0.000370051:0.05061:0.116327:rs12238997
1   705882  rs72631875  G   A   .   PASS    AF=0.067307 ES:SE:LP:AF:ID  -0.000360717:0.000542185:0.29243:0.067307:rs72631875
1   706368  rs12029736  A   G   .   PASS    AF=0.515674 ES:SE:LP:AF:ID  9.98836e-05:0.000274123:0.142668:0.515674:rs12029736
1   722670  rs116030099 T   C   .   PASS    AF=0.101206 ES:SE:LP:AF:ID  0.000358504:0.000452246:0.366532:0.101206:rs116030099
1   729679  rs4951859   C   G   .   PASS    AF=0.843193 ES:SE:LP:AF:ID  0.000110603:0.000320681:0.136677:0.843193:rs4951859
1   731718  rs58276399  T   C   .   PASS    AF=0.122317 ES:SE:LP:AF:ID  -8.63766e-05:0.000351022:0.091515:0.122317:rs58276399
1   734349  rs141242758 T   C   .   PASS    AF=0.12156  ES:SE:LP:AF:ID  -5.93871e-05:0.000351169:0.0604807:0.12156:rs141242758
1   736289  rs79010578  T   A   .   PASS    AF=0.132336 ES:SE:LP:AF:ID  -0.000365169:0.000346118:0.537602:0.132336:rs79010578
1   752566  rs3094315   G   A   .   PASS    AF=0.838936 ES:SE:LP:AF:ID  0.000133645:0.000310557:0.173925:0.838936:rs3094315
1   752721  rs3131972   A   G   .   PASS    AF=0.838563 ES:SE:LP:AF:ID  0.000141307:0.000310222:0.187087:0.838563:rs3131972
1   753405  rs3115860   C   A   .   PASS    AF=0.869771 ES:SE:LP:AF:ID  3.7453e-05:0.000332888:0.0409586:0.869771:rs3115860
1   753541  rs2073813   G   A   .   PASS    AF=0.129882 ES:SE:LP:AF:ID  -6.31667e-05:0.000333562:0.0705811:0.129882:rs2073813
1   754182  rs3131969   A   G   .   PASS    AF=0.869112 ES:SE:LP:AF:ID  3.14744e-05:0.000332233:0.0362122:0.869112:rs3131969
1   754192  rs3131968   A   G   .   PASS    AF=0.869209 ES:SE:LP:AF:ID  2.12852e-05:0.000332364:0.0222764:0.869209:rs3131968
1   754334  rs3131967   T   C   .   PASS    AF=0.869115 ES:SE:LP:AF:ID  3.09717e-05:0.000332227:0.0315171:0.869115:rs3131967
1   754503  rs3115859   G   A   .   PASS    AF=0.838016 ES:SE:LP:AF:ID  0.000148877:0.000309361:0.200659:0.838016:rs3115859
1   754964  rs3131966   C   T   .   PASS    AF=0.838646 ES:SE:LP:AF:ID  0.000127661:0.00031023:0.167491:0.838646:rs3131966
1   755775  rs3131965   A   G   .   PASS    AF=0.839762 ES:SE:LP:AF:ID  0.000109458:0.000314428:0.136677:0.839762:rs3131965
1   755890  rs3115858   A   T   .   PASS    AF=0.869396 ES:SE:LP:AF:ID  4.17677e-05:0.000331845:0.0457575:0.869396:rs3115858
1   756604  rs3131962   A   G   .   PASS    AF=0.868946 ES:SE:LP:AF:ID  6.75187e-05:0.000331013:0.0757207:0.868946:rs3131962
1   757640  rs3115853   G   A   .   PASS    AF=0.867895 ES:SE:LP:AF:ID  7.28697e-05:0.000330374:0.0809219:0.867895:rs3115853
1   757734  rs4951929   C   T   .   PASS    AF=0.869088 ES:SE:LP:AF:ID  5.4665e-05:0.000331282:0.0604807:0.869088:rs4951929
1   757936  rs4951862   C   A   .   PASS    AF=0.869096 ES:SE:LP:AF:ID  5.43141e-05:0.000331308:0.0604807:0.869096:rs4951862
1   758144  rs3131956   A   G   .   PASS    AF=0.869104 ES:SE:LP:AF:ID  5.37387e-05:0.000331315:0.0604807:0.869104:rs3131956
1   758626  rs3131954   C   T   .   PASS    AF=0.86958  ES:SE:LP:AF:ID  4.90982e-05:0.000332223:0.0555173:0.86958:rs3131954
1   760912  rs1048488   C   T   .   PASS    AF=0.838296 ES:SE:LP:AF:ID  0.000107218:0.000308772:0.136677:0.838296:rs1048488
1   761147  rs3115850   T   C   .   PASS    AF=0.838417 ES:SE:LP:AF:ID  0.000114457:0.00030899:0.148742:0.838417:rs3115850
1   761732  rs2286139   C   T   .   PASS    AF=0.862251 ES:SE:LP:AF:ID  1.37124e-05:0.000330112:0.0132283:0.862251:rs2286139
1   763394  rs3115847   G   A   .   PASS    AF=0.706754 ES:SE:LP:AF:ID  -0.000192314:0.00032137:0.259637:0.706754:rs3115847
1   766007  rs61768174  A   C   .   PASS    AF=0.10513  ES:SE:LP:AF:ID  -0.000186389:0.000370238:0.21467:0.10513:rs61768174
1   768253  rs2977608   A   C   .   PASS    AF=0.761335 ES:SE:LP:AF:ID  0.000402469:0.000262315:0.920819:0.761335:rs2977608
1   768448  rs12562034  G   A   .   PASS    AF=0.106455 ES:SE:LP:AF:ID  -0.000709802:0.000361572:1.30103:0.106455:rs12562034
1   769223  rs60320384  C   G   .   PASS    AF=0.129579 ES:SE:LP:AF:ID  -5.62464e-05:0.000333371:0.0604807:0.129579:rs60320384
1   771823  rs2977605   T   C   .   PASS    AF=0.868907 ES:SE:LP:AF:ID  1.44048e-05:0.000331593:0.0132283:0.868907:rs2977605
1   771967  rs59066358  G   A   .   PASS    AF=0.12968  ES:SE:LP:AF:ID  -5.06898e-05:0.000333156:0.0555173:0.12968:rs59066358
1   772755  rs2905039   A   C   .   PASS    AF=0.868918 ES:SE:LP:AF:ID  1.232e-05:0.000331601:0.0132283:0.868918:rs2905039
1   776546  rs12124819  A   G   .   PASS    AF=0.265367 ES:SE:LP:AF:ID  0.000817277:0.000292986:2.27572:0.265367:rs12124819
1   777122  rs2980319   A   T   .   PASS    AF=0.870036 ES:SE:LP:AF:ID  1.29601e-05:0.000332274:0.0132283:0.870036:rs2980319
1   777232  rs112618790 C   T   .   PASS    AF=0.095116 ES:SE:LP:AF:ID  -0.000662134:0.000385142:1.0655:0.095116:rs112618790
1   778745  rs1055606   A   G   .   PASS    AF=0.128581 ES:SE:LP:AF:ID  -4.24143e-05:0.000333583:0.0457575:0.128581:rs1055606
1   779322  rs4040617   A   G   .   PASS    AF=0.12888  ES:SE:LP:AF:ID  -4.51566e-05:0.000333015:0.05061:0.12888:rs4040617
1   780785  rs2977612   T   A   .   PASS    AF=0.868777 ES:SE:LP:AF:ID  -2.03161e-05:0.000331386:0.0222764:0.868777:rs2977612
1   781845  rs61768199  A   G   .   PASS    AF=0.101863 ES:SE:LP:AF:ID  -0.000167251:0.000375521:0.180456:0.101863:rs61768199