Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ubm-b-1,TotalVariants=17103079,VariantsNotRead=0,HarmonisedVariants=17103079,VariantsNotHarmonised=0,SwitchedAlleles=15529491,NormalisedVariants=998,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-vcf/inputs/1292253946/upload.txt.gz --id ubm-b-1 --json /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-vcf/inputs/1292253946/ubm-b-1_data.json --ref /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ubm-b-1/ubm-b-1.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2023-10-13T18:28:57.722140",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-report/inputs/1292253946/ubm-b-1.vcf.gz; Date=Fri Oct 13 19:02:46 2023"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-ldsc/inputs/1292253946/ubm-b-1.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ubm-b-1/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Fri Oct 13 18:49:25 2023
Reading summary statistics from /data/cromwell-executions/qc/42f76e4e-5763-4154-a8ef-ac467a885e25/call-ldsc/inputs/1292253946/ubm-b-1.vcf.gz ...
Read summary statistics for 0 SNPs.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/ldsc/ldscore/sumstats.py", line 252, in _read_ld_sumstats
    sumstats = _merge_and_log(ref_ld, sumstats, 'reference panel LD', log)
  File "/ldsc/ldscore/sumstats.py", line 238, in _merge_and_log
    raise ValueError(msg.format(N=len(sumstats), F=noun))
ValueError: After merging with reference panel LD, 0 SNPs remain.

Analysis finished at Fri Oct 13 18:51:15 2023
Total time elapsed: 1.0m:50.25s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": "NA",
    "mean_EFFECT": -2.2857e-06,
    "n": "-Inf",
    "n_snps": 17103079,
    "n_clumped_hits": 0,
    "n_p_sig": 1,
    "n_mono": 0,
    "n_ns": 3663649,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 17103079,
    "n_miss_AF_reference": 2380407,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 0,
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation NA
inflation_factor NA
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq NA
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio NA
ldsc_intercept_beta NA
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 2235 0.9998693 3 64 0 17024571 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 88 0 22100 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 662 0 96537 0 NA NA NA NA NA NA NA NA NA NA
logical AF 17103079 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
logical N 17103079 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 9.213571e+00 6.308570e+00 1.0000000 4.000000e+00 8.000000e+00 1.400000e+01 2.300000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.863644e+07 5.592124e+07 173.0000000 3.260191e+07 6.958721e+07 1.145443e+08 2.492405e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -2.300000e-06 6.494760e-02 -0.8805100 -1.628900e-02 -3.290000e-05 1.624500e-02 8.298900e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 4.694320e-02 4.427710e-02 0.0063576 1.026500e-02 2.590000e-02 7.798100e-02 2.593200e-01 ▇▂▂▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.618854e-01 4.802231e-01 0.0000000 1.302801e-01 3.147103e-01 6.340405e-01 2.659194e+01 ▇▁▁▁▁
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.879547e-01 2.920305e-01 0.0000000 2.322447e-01 4.844922e-01 7.408338e-01 9.999999e-01 ▇▇▇▇▇
numeric AF_reference 2380407 0.8608200 NA NA NA NA NA NA NA 1.605877e-01 2.359276e-01 0.0000000 1.397800e-03 3.454470e-02 2.352240e-01 1.000000e+00 ▇▂▁▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 10177 rs1264289758 AC A -0.0155440 0.011609 0.7432998 0.1805833 NA NA NA
1 10352 rs1557426776 TA T -0.0023541 0.011962 0.0736665 0.8439855 NA NA NA
1 10511 rs534229142 G A 0.1903300 0.163710 0.6108604 0.2449900 NA 0.0001997 NA
1 10616 rs1557426951 C CCGCCGTTGCAAAGGCGCGCCG 0.0172900 0.075695 0.0865466 0.8193223 NA NA NA
1 11008 rs575272151 C G 0.0343850 0.019939 1.0725000 0.0846159 NA 0.0880591 NA
1 11012 rs544419019 C G 0.0343850 0.019939 1.0725000 0.0846159 NA 0.0880591 NA
1 13110 rs540538026 G A -0.0575420 0.026563 1.5185986 0.0302924 NA 0.0267572 NA
1 13116 rs62635286 T G -0.0160000 0.015687 0.5118103 0.3077508 NA 0.0970447 NA
1 13118 rs200579949 A G -0.0160000 0.015687 0.5118103 0.3077508 NA 0.0970447 NA
1 13273 rs531730856 G C 0.0228600 0.018366 0.6710996 0.2132453 NA 0.0950479 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
23 155236918 rs3093527 G A -0.021057 0.055569 0.1519700 0.7047367 NA 0.0515176 NA
23 155237811 rs764129350 G A -0.394370 0.154240 1.9761004 0.0105622 NA 0.0143770 NA
23 155237885 rs776508517 A G 0.137130 0.105400 0.7138303 0.1932435 NA 0.0309505 NA
23 155247345 rs751554334 T C 0.028634 0.071490 0.1619299 0.6887651 NA 0.1485620 NA
23 155254802 rs4568757 C A -0.026227 0.063213 0.1686301 0.6782160 NA 0.0315495 NA
23 155254881 rs28415761 C A -0.121330 0.105850 0.5991506 0.2516939 NA NA NA
23 155255153 rs28742024 G A 0.032927 0.091633 0.1430599 0.7193440 NA NA NA
23 155255277 rs1045930 C G -0.026426 0.129950 0.0763133 0.8388575 NA NA NA
23 155260480 NA T A -0.027088 0.012399 1.5388986 0.0289114 NA NA NA
23 155260480 NA T G -0.013158 0.013251 0.4938397 0.3207189 NA NA NA

bcf preview

1   10177   rs1264289758    AC  A   .   PASS    .   ES:SE:LP:ID -0.015544:0.011609:0.128836:rs1264289758
1   10352   rs1557426776    TA  T   .   PASS    .   ES:SE:LP:ID -0.0023541:0.011962:1.13273:rs1557426776
1   10511   rs534229142 G   A   .   PASS    .   ES:SE:LP:ID 0.19033:0.16371:0.214058:rs534229142
1   10616   rs1557426951    C   CCGCCGTTGCAAAGGCGCGCCG  .   PASS    .   ES:SE:LP:ID 0.01729:0.075695:1.06275:rs1557426951
1   11008   rs575272151 C   G   .   PASS    .   ES:SE:LP:ID 0.034385:0.019939:-0.0303973:rs575272151
1   11012   rs544419019 C   G   .   PASS    .   ES:SE:LP:ID 0.034385:0.019939:-0.0303973:rs544419019
1   13110   rs540538026 G   A   .   PASS    .   ES:SE:LP:ID -0.057542:0.026563:-0.181443:rs540538026
1   13116   rs62635286  T   G   .   PASS    .   ES:SE:LP:ID -0.016:0.015687:0.290891:rs62635286
1   13118   rs62028691  A   G   .   PASS    .   ES:SE:LP:ID -0.016:0.015687:0.290891:rs62028691
1   13273   rs531730856 G   C   .   PASS    .   ES:SE:LP:ID 0.02286:0.018366:0.173213:rs531730856
1   13453   rs568927457 T   C   .   PASS    .   ES:SE:LP:ID -0.013219:0.070195:1.15329:rs568927457
1   13483   rs554760071 G   C   .   PASS    .   ES:SE:LP:ID 0.017637:0.078887:1.07287:rs554760071
1   13494   rs1272445563    A   G   .   PASS    .   ES:SE:LP:ID -0.098665:0.11681:0.39819:rs1272445563
1   13550   rs554008981 G   A   .   PASS    .   ES:SE:LP:ID -0.10721:0.094801:0.230497:rs554008981
1   14464   rs546169444 A   T   .   PASS    .   ES:SE:LP:ID 0.0054753:0.016534:0.884523:rs546169444
1   14599   rs707680    T   A   .   PASS    .   ES:SE:LP:ID -0.0042671:0.015197:0.96445:rs707680
1   14604   rs1418508701    A   G   .   PASS    .   ES:SE:LP:ID -0.0042671:0.015197:0.96445:rs1418508701
1   14930   rs6682385   A   G   .   PASS    .   ES:SE:LP:ID -0.0067493:0.011778:0.607813:rs6682385
1   14933   rs199856693 G   A   .   PASS    .   ES:SE:LP:ID -0.0062147:0.029223:1.09641:rs199856693
1   15211   rs3982632   T   G   .   PASS    .   ES:SE:LP:ID -0.00019979:0.013595:2.29056:rs3982632
1   15245   rs576044687 C   T   .   PASS    .   ES:SE:LP:ID 0.01087:0.17448:1.65508:rs576044687
1   15585   rs533630043 G   A   .   PASS    .   ES:SE:LP:ID -0.026129:0.064662:0.78627:rs533630043
1   15644   rs564003018 G   A   .   PASS    .   ES:SE:LP:ID 0.19981:0.1057:-0.0903286:rs564003018
1   15777   rs2691317   A   G   .   PASS    .   ES:SE:LP:ID 0.00026695:0.050077:2.73257:rs2691317
1   15820   rs1316988498    G   T   .   PASS    .   ES:SE:LP:ID -0.0038574:0.013893:0.969846:rs1316988498
1   15903   rs557514207 GC  G   .   PASS    .   ES:SE:LP:ID -0.020636:0.011531:-0.0544598:rs557514207
1   16142   rs548165136 G   A   .   PASS    .   ES:SE:LP:ID 0.10116:0.1021:0.307647:rs548165136
1   16949   rs199745162 A   C   .   PASS    .   ES:SE:LP:ID -0.025696:0.041276:0.564156:rs199745162
1   18643   rs564023708 G   A   .   PASS    .   ES:SE:LP:ID -0.046578:0.074967:0.565208:rs564023708
1   18849   rs533090414 C   G   .   PASS    .   ES:SE:LP:ID -0.050469:0.035445:0.0909256:rs533090414
1   28590   rs1344649620    T   TTGG    .   PASS    .   ES:SE:LP:ID 0.020558:0.032568:0.5568:rs1344649620
1   30923   rs1165072081    G   T   .   PASS    .   ES:SE:LP:ID 0.028594:0.021837:0.142468:rs1165072081
1   46285   rs545414834 A   ATAT    .   PASS    .   ES:SE:LP:ID 0.074786:0.13252:0.615808:rs545414834
1   47159   rs540662756 T   C   .   PASS    .   ES:SE:LP:ID 0.023066:0.024618:0.339675:rs540662756
1   49298   rs10399793  T   C   .   PASS    .   ES:SE:LP:ID -0.022605:0.013834:0.00425515:rs10399793
1   49315   rs1231347385    T   A   .   PASS    .   ES:SE:LP:ID 0.10942:0.19532:0.619644:rs1231347385
1   49318   rs1231347385    A   G   .   PASS    .   ES:SE:LP:ID -0.22353:0.14161:0.0262581:rs1231347385
1   49343   rs553572247 T   C   .   PASS    .   ES:SE:LP:ID -0.0077935:0.14223:1.71209:rs553572247
1   49554   rs539322794 A   G   .   PASS    .   ES:SE:LP:ID -0.024443:0.021119:0.21674:rs539322794
1   50891   rs542415070 T   C   .   PASS    .   ES:SE:LP:ID 0.10021:0.098033:0.289654:rs542415070
1   51047   rs559500163 A   T   .   PASS    .   ES:SE:LP:ID -0.0010563:0.139:2.57822:rs559500163
1   51049   rs528344458 A   C   .   PASS    .   ES:SE:LP:ID -0.0010563:0.139:2.57822:rs528344458
1   51050   rs551668143 A   T   .   PASS    .   ES:SE:LP:ID -0.0010563:0.139:2.57822:rs551668143
1   51053   rs565211799 G   T   .   PASS    .   ES:SE:LP:ID -0.0010563:0.139:2.57822:rs565211799
1   51479   rs116400033 T   A   .   PASS    .   ES:SE:LP:ID 0.026206:0.014706:-0.0516926:rs116400033
1   51762   rs1359003408    A   G   .   PASS    .   ES:SE:LP:ID 0.12209:0.062567:-0.111363:rs1359003408
1   51765   rs1359003408    C   G   .   PASS    .   ES:SE:LP:ID 0.12127:0.062646:-0.106055:rs1359003408
1   52152   rs1272293782    A   ATAAT   .   PASS    .   ES:SE:LP:ID 0.22412:0.15683:0.0886985:rs1272293782
1   52238   rs2691277   T   G   .   PASS    .   ES:SE:LP:ID 0.042497:0.045147:0.337035:rs2691277
1   52253   rs530867301 C   G   .   PASS    .   ES:SE:LP:ID -0.072698:0.088744:0.415239:rs530867301