Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-8,TotalVariants=4880492,VariantsNotRead=0,HarmonisedVariants=4880492,VariantsNotHarmonised=0,SwitchedAlleles=2298193,NormalisedVariants=0,TotalControls=29677,TotalCases=15212,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-vcf/inputs/-674580006/upload.txt.gz --id ieu-b-8 --json /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-vcf/inputs/-674580006/ieu-b-8_data.json --ref /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-8/ieu-b-8.vcf.gz --rm_chr_prefix --cohort_cases 15212 --cohort_controls 29677; 1.2.1",
    "file_date": "2020-06-26T15:16:16.956739",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/igd/ieu-b-8/ieu-b-8.vcf.gz; Date=Thu Feb 25 04:22:06 2021"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-ldsc/inputs/-674580006/ieu-b-8.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-8/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Fri Jun 26 15:27:17 2020
Reading summary statistics from /data/cromwell-executions/qc/fef6f54f-8e04-45bf-814f-90d7e04a52a2/call-ldsc/inputs/-674580006/ieu-b-8.vcf.gz ...
Read summary statistics for 4880479 SNPs.
Dropped 11459 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 932586 SNPs remain.
After merging with regression SNP LD, 932586 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.1042 (0.0166)
Lambda GC: 1.2631
Mean Chi^2: 1.2708
Intercept: 1.168 (0.0106)
Ratio: 0.6205 (0.0392)
Analysis finished at Fri Jun 26 15:28:13 2020
Total time elapsed: 56.19s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9391,
    "inflation_factor": 1.2544,
    "mean_EFFECT": 0.0002,
    "n": "-Inf",
    "n_snps": 4880492,
    "n_clumped_hits": 3,
    "n_p_sig": 118,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 29052,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NA",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 932586,
    "ldsc_nsnp_merge_regression_ld": 932586,
    "ldsc_observed_scale_h2_beta": 0.1042,
    "ldsc_observed_scale_h2_se": 0.0166,
    "ldsc_intercept_beta": 1.168,
    "ldsc_intercept_se": 0.0106,
    "ldsc_lambda_gc": 1.2631,
    "ldsc_mean_chisq": 1.2708,
    "ldsc_ratio": 0.6204
}
 

Flags

name value
af_correlation FALSE
inflation_factor TRUE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 1 0.9999998 3 35 0 4880489 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 4880492 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.643045e+00 5.873503e+00 1.00000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.30000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.987905e+07 5.500345e+07 3.30120e+04 3.486021e+07 7.141238e+07 1.144980e+08 2.49219e+08 ▇▇▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 1.621000e-04 1.427390e-02 -1.20622e-01 -7.694700e-03 1.820000e-05 7.861200e-03 1.72556e-01 ▁▅▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.162850e-02 5.518900e-03 7.19060e-03 7.759800e-03 9.390500e-03 1.336680e-02 7.19243e-02 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.633444e-01 2.974830e-01 0.00000e+00 1.971002e-01 4.500005e-01 7.199992e-01 1.00000e+00 ▇▆▆▆▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.633493e-01 2.974842e-01 0.00000e+00 1.970509e-01 4.502473e-01 7.203435e-01 1.00000e+00 ▇▆▆▆▆
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.044716e-01 2.572226e-01 2.80000e-03 8.810000e-02 2.228000e-01 4.723000e-01 9.90000e-01 ▇▃▂▂▁
numeric AF_reference 29052 0.9940473 NA NA NA NA NA NA NA 3.064329e-01 2.468090e-01 1.99700e-04 1.030350e-01 2.344250e-01 4.658550e-01 1.00000e+00 ▇▅▃▂▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 1029805 rs6689308 A G 0.0046683 0.0096853 0.6300007 0.6298059 0.1695 0.315695 NA
1 1031973 rs9651270 C T 0.0081627 0.0100156 0.4151997 0.4150720 0.1614 0.310703 NA
1 1033596 rs6604964 T C 0.0081661 0.0100198 0.4151997 0.4150744 0.1613 0.311701 NA
1 1033670 rs6604966 T C 0.0075903 0.0100268 0.4492003 0.4490509 0.1612 0.315895 NA
1 1033680 rs6604967 T A 0.0074992 0.0100256 0.4545995 0.4544589 0.1612 0.311701 NA
1 1033994 rs6698368 C T 0.0075294 0.0100258 0.4527005 0.4526512 0.1612 0.311502 NA
1 1034200 rs77977351 T C 0.0078305 0.0100262 0.4346003 0.4348020 0.1612 0.311502 NA
1 1036860 rs11579922 A C -0.0049122 0.0108918 0.6515999 0.6519890 0.1304 0.282748 NA
1 1036959 rs11579015 T C -0.0142564 0.0113236 0.2079998 0.2080307 0.1165 0.156949 NA
1 1037303 rs11260592 T C 0.0008073 0.0103497 0.9379999 0.9378281 0.1433 0.282548 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
23 139277416 rs435268 G A 0.0154301 0.0073268 0.0352298 0.0352048 0.4886 0.650861 NA
23 139279657 rs369604 G A 0.0171617 0.0072473 0.0178698 0.0178845 0.4477 0.442384 NA
23 139279671 rs382435 A G 0.0188326 0.0073023 0.0099010 0.0099088 0.4494 0.435762 NA
23 139279881 rs414554 C G 0.0144002 0.0072986 0.0484998 0.0484955 0.4962 0.655894 NA
23 139282091 rs426349 C T 0.0160941 0.0073188 0.0278702 0.0278776 0.4862 0.471788 NA
23 139282915 rs419307 C T 0.0139442 0.0072475 0.0543400 0.0543537 0.4873 0.539868 NA
23 139284404 rs430026 G A 0.0161309 0.0074473 0.0303103 0.0303111 0.4174 0.308609 NA
23 139287243 rs412811 T C 0.0204486 0.0075428 0.0066999 0.0067082 0.4504 0.460397 NA
23 139288359 rs367697 C T 0.0137191 0.0072511 0.0585302 0.0584903 0.4839 0.488477 NA
23 139289049 rs387193 A G 0.0198387 0.0075490 0.0086000 0.0085888 0.4483 0.450331 NA

bcf preview

1   1029805 rs891281851 A   G   .   PASS    AF=0.1695   ES:SE:LP:AF:ID  0.00466833:0.00968533:0.200659:0.1695:rs891281851
1   1031973 rs9651270   C   T   .   PASS    AF=0.1614   ES:SE:LP:AF:ID  0.00816272:0.0100156:0.381743:0.1614:rs9651270
1   1033596 rs6604964   T   C   .   PASS    AF=0.1613   ES:SE:LP:AF:ID  0.0081661:0.0100198:0.381743:0.1613:rs6604964
1   1033670 rs1370950991    T   C   .   PASS    AF=0.1612   ES:SE:LP:AF:ID  0.00759027:0.0100268:0.34756:0.1612:rs1370950991
1   1033680 rs1370950991    T   A   .   PASS    AF=0.1612   ES:SE:LP:AF:ID  0.00749917:0.0100256:0.342371:0.1612:rs1370950991
1   1033994 rs6698368   C   T   .   PASS    AF=0.1612   ES:SE:LP:AF:ID  0.0075294:0.0100258:0.344189:0.1612:rs6698368
1   1034200 rs77977351  T   C   .   PASS    AF=0.1612   ES:SE:LP:AF:ID  0.00783047:0.0100262:0.36191:0.1612:rs77977351
1   1036860 rs11579922  A   C   .   PASS    AF=0.1304   ES:SE:LP:AF:ID  -0.00491221:0.0108918:0.186019:0.1304:rs11579922
1   1036959 rs1162868282    T   C   .   PASS    AF=0.1165   ES:SE:LP:AF:ID  -0.0142564:0.0113236:0.681937:0.1165:rs1162868282
1   1037303 rs11260592  T   C   .   PASS    AF=0.1433   ES:SE:LP:AF:ID  0.000807276:0.0103497:0.0277972:0.1433:rs11260592
1   1037313 rs11260593  A   G   .   PASS    AF=0.1484   ES:SE:LP:AF:ID  0.00318051:0.010129:0.122801:0.1484:rs11260593
1   1037367 rs11260594  G   A   .   PASS    AF=0.1433   ES:SE:LP:AF:ID  0.000672813:0.010351:0.0232833:0.1433:rs11260594
1   1038088 rs66622470  G   C   .   PASS    AF=0.1433   ES:SE:LP:AF:ID  0.000641652:0.0103492:0.0219565:0.1433:rs66622470
1   1039268 rs9329410   T   C   .   PASS    AF=0.1435   ES:SE:LP:AF:ID  0.000258532:0.0103413:0.00872961:0.1435:rs9329410
1   1039817 rs1205065516    A   G   .   PASS    AF=0.1433   ES:SE:LP:AF:ID  -0.00012418:0.0103483:0.00423322:0.1433:rs1205065516
1   1040026 rs6671356   T   C   .   PASS    AF=0.1437   ES:SE:LP:AF:ID  -9.29753e-05:0.0103306:0.00300702:0.1437:rs6671356
1   1040472 rs6664124   C   T   .   PASS    AF=0.1436   ES:SE:LP:AF:ID  -0.000609749:0.0103347:0.0207704:0.1436:rs6664124
1   1040794 rs6687681   G   A   .   PASS    AF=0.1436   ES:SE:LP:AF:ID  -0.000733819:0.0103355:0.0253502:0.1436:rs6687681
1   1040824 rs6656379   T   C   .   PASS    AF=0.1488   ES:SE:LP:AF:ID  0.00213344:0.0101111:0.0792507:0.1488:rs6656379
1   1040985 rs6697379   C   G   .   PASS    AF=0.1436   ES:SE:LP:AF:ID  -0.000516762:0.0103352:0.0175478:0.1436:rs6697379
1   1041700 rs6604968   A   G   .   PASS    AF=0.1437   ES:SE:LP:AF:ID  -0.000919998:0.0103371:0.032031:0.1437:rs6604968
1   1041786 rs6604969   T   C   .   PASS    AF=0.1437   ES:SE:LP:AF:ID  -0.00144741:0.0103386:0.0512448:0.1437:rs6604969
1   1042483 rs12733365  C   T   .   PASS    AF=0.1436   ES:SE:LP:AF:ID  -0.00119906:0.0103367:0.0422491:0.1436:rs12733365
1   1042527 rs1486993720    G   C   .   PASS    AF=0.1155   ES:SE:LP:AF:ID  -0.0108693:0.0114293:0.466482:0.1155:rs1486993720
1   1042673 rs897825316 C   T   .   PASS    AF=0.1447   ES:SE:LP:AF:ID  -0.0018032:0.0103632:0.0644927:0.1447:rs897825316
1   1042927 rs4970354   G   T   .   PASS    AF=0.1435   ES:SE:LP:AF:ID  -0.00116821:0.0103381:0.0408632:0.1435:rs4970354
1   1043053 rs4970355   A   G   .   PASS    AF=0.1435   ES:SE:LP:AF:ID  -0.00103389:0.0103389:0.0360706:0.1435:rs4970355
1   1045473 rs11586034  G   A   .   PASS    AF=0.1149   ES:SE:LP:AF:ID  -0.0120084:0.0114584:0.530915:0.1149:rs11586034
1   1046073 rs11590188  C   A   .   PASS    AF=0.1417   ES:SE:LP:AF:ID  -0.00311087:0.0104043:0.116509:0.1417:rs11590188
1   1046164 rs386627439 C   T   .   PASS    AF=0.1435   ES:SE:LP:AF:ID  -0.000899481:0.0103389:0.0310503:0.1435:rs386627439
1   1046717 rs34820586  G   C   .   PASS    AF=0.1159   ES:SE:LP:AF:ID  -0.0116034:0.0114094:0.50976:0.1159:rs34820586
1   1046861 rs12723165  G   A   .   PASS    AF=0.1159   ES:SE:LP:AF:ID  -0.0118994:0.0114088:0.527244:0.1159:rs12723165
1   1047374 rs12743678  T   A   .   PASS    AF=0.1481   ES:SE:LP:AF:ID  0.00188568:0.0101381:0.0695094:0.1481:rs12743678
1   1048501 rs7518814   G   A   .   PASS    AF=0.1418   ES:SE:LP:AF:ID  -0.00278747:0.010401:0.103088:0.1418:rs7518814
1   1048955 rs4970405   A   G   .   PASS    AF=0.1058   ES:SE:LP:AF:ID  -0.0161195:0.0118701:0.758205:0.1058:rs4970405
1   1048989 rs4970406   A   G   .   PASS    AF=0.1177   ES:SE:LP:AF:ID  -0.00989045:0.011434:0.412177:0.1177:rs4970406
1   1049083 rs4970407   C   A   .   PASS    AF=0.1168   ES:SE:LP:AF:ID  -0.0113452:0.0114598:0.49174:0.1168:rs4970407
1   1049950 rs12726255  A   G   .   PASS    AF=0.1473   ES:SE:LP:AF:ID  0.00127223:0.0101779:0.0453716:0.1473:rs12726255
1   1052946 rs12755848  G   T   .   PASS    AF=0.115    ES:SE:LP:AF:ID  -0.0103966:0.0114753:0.437945:0.115:rs12755848
1   1053452 rs4970409   G   A   .   PASS    AF=0.1149   ES:SE:LP:AF:ID  -0.0107421:0.0114766:0.456926:0.1149:rs4970409
1   1053670 rs4970410   G   A   .   PASS    AF=0.1409   ES:SE:LP:AF:ID  -0.000794728:0.0104569:0.0272882:0.1409:rs4970410
1   1053724 rs4970411   A   G   .   PASS    AF=0.1405   ES:SE:LP:AF:ID  -0.000932199:0.0104741:0.032031:0.1405:rs4970411
1   1054552 rs12567697  G   A   .   PASS    AF=0.114    ES:SE:LP:AF:ID  -0.0103564:0.0115199:0.433327:0.114:rs12567697
1   1054893 rs4970412   T   C   .   PASS    AF=0.1458   ES:SE:LP:AF:ID  0.00162808:0.0102395:0.0587371:0.1458:rs4970412
1   1055653 rs34808604  C   G   .   PASS    AF=0.1142   ES:SE:LP:AF:ID  -0.0111456:0.0115141:0.477295:0.1142:rs34808604
1   1055797 rs76744376  A   G   .   PASS    AF=0.1155   ES:SE:LP:AF:ID  -0.00945663:0.0115466:0.384155:0.1155:rs76744376
1   1055901 rs74865318  C   A   .   PASS    AF=0.1142   ES:SE:LP:AF:ID  -0.0111473:0.0115159:0.477686:0.1142:rs74865318
1   1056269 rs71628940  C   T   .   PASS    AF=0.1155   ES:SE:LP:AF:ID  -0.0104284:0.0115486:0.436045:0.1155:rs71628940
1   1056348 rs66868065  G   A   .   PASS    AF=0.14 ES:SE:LP:AF:ID  -0.000923867:0.0104985:0.0316572:0.14:rs66868065
1   1056715 rs7538862   C   T   .   PASS    AF=0.1457   ES:SE:LP:AF:ID  0.00261453:0.0102531:0.0976163:0.1457:rs7538862