Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4839,TotalVariants=8281749,VariantsNotRead=0,HarmonisedVariants=8281388,VariantsNotHarmonised=361,SwitchedAlleles=3650600,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-vcf/inputs/-261044472/upload.txt.gz --id ieu-b-4839 --json /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-vcf/inputs/-261044472/ieu-b-4839_data.json --ref /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4839/ieu-b-4839.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T13:52:03.597100",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-report/inputs/-261044472/ieu-b-4839.vcf.gz; Date=Wed Jan  5 14:13:06 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-ldsc/inputs/-261044472/ieu-b-4839.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4839/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 14:04:08 2022
Reading summary statistics from /data/cromwell-executions/qc/5ed56914-8623-42f8-811a-f3f5a9da44e3/call-ldsc/inputs/-261044472/ieu-b-4839.vcf.gz ...
Read summary statistics for 8281322 SNPs.
Dropped 44694 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1201723 SNPs remain.
After merging with regression SNP LD, 1201723 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0431 (0.0284)
Lambda GC: 1.0237
Mean Chi^2: 1.0197
Intercept: 1.0055 (0.0066)
Ratio: 0.2786 (0.3348)
Analysis finished at Wed Jan  5 14:05:52 2022
Total time elapsed: 1.0m:43.6s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.0259,
    "mean_EFFECT": -0.0001,
    "n": 16782,
    "n_snps": 8281388,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 308212,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 8281388,
    "n_miss_AF_reference": 231552,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1201723,
    "ldsc_nsnp_merge_regression_ld": 1201723,
    "ldsc_observed_scale_h2_beta": 0.0431,
    "ldsc_observed_scale_h2_se": 0.0284,
    "ldsc_intercept_beta": 1.0055,
    "ldsc_intercept_se": 0.0066,
    "ldsc_lambda_gc": 1.0237,
    "ldsc_mean_chisq": 1.0197,
    "ldsc_ratio": 0.2792
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 20 0.9999976 3 58 0 8279446 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 43 0 18182 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 44 0 6604 0 NA NA NA NA NA NA NA NA NA NA
logical AF 8281388 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.643230e+00 5.753598e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.906483e+07 5.634070e+07 3.0200e+02 3.282673e+07 6.981676e+07 1.147609e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -8.070000e-05 2.865680e-02 -2.8550e-01 -1.270000e-02 -1.000000e-04 1.250000e-02 2.696000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 2.388830e-02 1.556880e-02 8.3000e-03 1.240000e-02 1.660000e-02 3.030000e-02 8.520000e-02 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.966091e-01 2.893800e-01 6.0000e-07 2.451997e-01 4.944997e-01 7.474997e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.966108e-01 2.893850e-01 7.0000e-07 2.451696e-01 4.944544e-01 7.475746e-01 1.000000e+00 ▇▇▇▇▇
numeric AF_reference 231552 0.9720395 NA NA NA NA NA NA NA 2.560827e-01 2.523462e-01 0.0000e+00 4.852240e-02 1.679310e-01 4.015580e-01 1.000000e+00 ▇▃▂▁▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 1.464620e+04 2.350764e+03 1.0905e+04 1.172200e+04 1.584500e+04 1.665200e+04 1.678200e+04 ▃▁▁▂▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 797440 rs58013264 T C -0.0012 0.0170 0.9427000 0.9437255 NA 0.189497 13531
1 798400 rs10900604 A G -0.0100 0.0146 0.4944997 0.4933871 NA 0.410543 13531
1 798959 rs11240777 G A -0.0112 0.0141 0.4285998 0.4270055 NA 0.409944 14629
1 801467 rs61768212 G C -0.0017 0.0170 0.9189001 0.9203443 NA 0.193091 13401
1 804759 rs7526310 C T -0.0003 0.0170 0.9840000 0.9859204 NA 0.193890 13401
1 808223 rs4951933 G C -0.0051 0.0159 0.7488003 0.7483963 NA 0.452077 10905
1 808631 rs11240779 G A 0.0043 0.0140 0.7573995 0.7587346 NA 0.453474 13401
1 808928 rs11240780 C T 0.0045 0.0140 0.7493005 0.7478856 NA 0.452276 13401
1 845274 rs112856858 G T 0.0041 0.0170 0.8109000 0.8094183 NA 0.374002 11035
1 845635 rs117086422 C T 0.0180 0.0145 0.2147000 0.2144657 NA 0.158546 14629
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51177257 rs73174437 C T -0.0186 0.0333 0.5767001 0.5764630 NA 0.0091853 14070
22 51178607 rs6010067 G C -0.0267 0.0459 0.5608994 0.5607692 NA 0.0814696 10905
22 51180878 rs6010069 A G -0.0020 0.0175 0.9081001 0.9090113 NA 0.1589460 10905
22 51180959 rs6010070 A G -0.0017 0.0175 0.9248000 0.9226129 NA 0.2056710 10905
22 51181685 rs34756634 G A -0.0020 0.0201 0.9199000 0.9207393 NA 0.7118610 11035
22 51181687 rs9616955 A T 0.0206 0.0275 0.4538998 0.4538024 NA 0.0485224 10905
22 51181759 rs13056621 A G -0.0088 0.0164 0.5931998 0.5915541 NA 0.6761180 16127
22 51182090 rs28516879 G A 0.0139 0.0214 0.5141999 0.5159941 NA 0.0467252 15694
22 51185848 rs3865764 G A -0.0110 0.0316 0.7280999 0.7277641 NA 0.9776360 12875
22 51188319 rs139620215 T C 0.0572 0.0614 0.3514002 0.3515453 NA 0.0037939 10905

bcf preview

1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0012:0.017:0.0256265:13531:rs58013264
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.01:0.0146:0.305834:13531:rs10900604
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0112:0.0141:0.367948:14629:rs11240777
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0017:0.017:0.0367317:13401:rs61768212
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0003:0.017:0.0070049:13401:rs7526310
1   808223  rs1557576983    G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0051:0.0159:0.125634:10905:rs1557576983
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0043:0.014:0.120675:13401:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0045:0.014:0.125344:13401:rs1247187939
1   845274  rs1324283754    G   T   .   PASS    .   ES:SE:LP:SS:ID  0.0041:0.017:0.0910327:11035:rs1324283754
1   845635  rs117086422 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.018:0.0145:0.668168:14629:rs117086422
1   845938  rs57760052  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0162:0.0144:0.58603:14629:rs57760052
1   846078  rs778265812 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0166:0.0151:0.563678:14629:rs778265812
1   846236  rs138796872 G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0149:0.0481:0.121191:10905:rs138796872
1   846398  rs58781670  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0175:0.0146:0.638272:14629:rs58781670
1   846465  rs60454217  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0055:0.0464:0.0431115:10905:rs60454217
1   846543  rs79396034  G   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0021:0.0474:0.0158779:10905:rs79396034
1   846808  rs4475691   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.017:0.015:0.585528:14629:rs4475691
1   846864  rs1269142199    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0177:0.0152:0.614215:14499:rs1269142199
1   847228  rs3905286   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.016:0.0148:0.553308:14629:rs3905286
1   847491  rs1158719307    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0187:0.0146:0.70224:14629:rs1158719307
1   848090  rs4246505   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.019:0.0146:0.710857:14629:rs4246505
1   848445  rs1156895099    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0183:0.0146:0.679854:14629:rs1156895099
1   848456  rs11507767  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0183:0.0146:0.677781:14629:rs11507767
1   848738  rs3829741   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0188:0.0146:0.701584:14629:rs3829741
1   850062  rs28723578  A   T   .   PASS    .   ES:SE:LP:SS:ID  0.018:0.0146:0.662142:14499:rs28723578
1   850123  rs28622257  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0184:0.0146:0.682354:14629:rs28622257
1   851190  rs28609852  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0179:0.0146:0.656001:14629:rs28609852
1   851204  rs28552953  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0184:0.0145:0.688246:14499:rs28552953
1   852664  rs28605311  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0149:0.0147:0.50515:14629:rs28605311
1   852758  rs4970462   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0142:0.0155:0.443215:13627:rs4970462
1   853239  rs4970380   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0148:0.0147:0.499352:14629:rs4970380
1   853805  rs3748591   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0133:0.0408:0.128252:10905:rs3748591
1   854250  rs7537756   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0135:0.0147:0.446481:14629:rs7537756
1   854429  rs72902552  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0133:0.0408:0.128252:10905:rs72902552
1   856436  rs34105146  TG  T   .   PASS    .   ES:SE:LP:SS:ID  -0.0047:0.0177:0.101659:10905:rs34105146
1   856476  rs4040605   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0081:0.0128:0.276873:13401:rs4040605
1   857177  rs386627408 T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0007:0.0409:0.00594694:10905:rs386627408
1   858040  rs4970460   C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0029:0.0151:0.0718603:13401:rs4970460
1   858051  rs4970459   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0023:0.0151:0.0563077:13401:rs4970459
1   858801  rs7418179   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.002:0.0152:0.0493431:12529:rs7418179
1   859404  rs71509444  C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0102:0.0398:0.0984872:10905:rs71509444
1   859685  rs111572704 G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0143:0.0173:0.386475:10905:rs111572704
1   859690  rs71509445  C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0059:0.0441:0.0490513:10905:rs71509445
1   859701  rs71509446  C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0059:0.0441:0.0490513:10905:rs71509446
1   859913  rs1187056171    A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0059:0.0441:0.0490513:10905:rs1187056171
1   860416  rs61464428  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0018:0.0145:0.0444084:13401:rs61464428
1   860461  rs57465118  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0102:0.0398:0.0984872:10905:rs57465118
1   860521  rs57924093  C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0102:0.0398:0.0984872:10905:rs57924093
1   860688  rs60837925  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0015:0.0145:0.0369681:13401:rs60837925
1   860778  rs61338526  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0059:0.0441:0.0490513:10905:rs61338526