Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4838,TotalVariants=6719661,VariantsNotRead=0,HarmonisedVariants=6719302,VariantsNotHarmonised=359,SwitchedAlleles=3093734,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-vcf/inputs/-261044473/upload.txt.gz --id ieu-b-4838 --json /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-vcf/inputs/-261044473/ieu-b-4838_data.json --ref /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4838/ieu-b-4838.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T12:30:10.779550",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-report/inputs/-261044473/ieu-b-4838.vcf.gz; Date=Wed Jan  5 12:49:27 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-ldsc/inputs/-261044473/ieu-b-4838.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4838/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 12:41:27 2022
Reading summary statistics from /data/cromwell-executions/qc/0cddccd3-66b2-4eb5-bf41-8a330bdbbfab/call-ldsc/inputs/-261044473/ieu-b-4838.vcf.gz ...
Read summary statistics for 6719230 SNPs.
Dropped 18738 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1186489 SNPs remain.
After merging with regression SNP LD, 1186489 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.2412 (0.0262)
Lambda GC: 1.1325
Mean Chi^2: 1.1468
Intercept: 1.0429 (0.0073)
Ratio: 0.2921 (0.0496)
Analysis finished at Wed Jan  5 12:43:07 2022
Total time elapsed: 1.0m:40.03s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.1197,
    "mean_EFFECT": -0,
    "n": 22593,
    "n_snps": 6719302,
    "n_clumped_hits": 3,
    "n_p_sig": 8,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 6719302,
    "n_miss_AF_reference": 53316,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1186489,
    "ldsc_nsnp_merge_regression_ld": 1186489,
    "ldsc_observed_scale_h2_beta": 0.2412,
    "ldsc_observed_scale_h2_se": 0.0262,
    "ldsc_intercept_beta": 1.0429,
    "ldsc_intercept_se": 0.0073,
    "ldsc_lambda_gc": 1.1325,
    "ldsc_mean_chisq": 1.1468,
    "ldsc_ratio": 0.2922
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 45 0.9999933 3 58 0 6719206 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 6719302 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.660922e+00 5.761272e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.862500e+07 5.646681e+07 8.2800e+02 3.212334e+07 6.907324e+07 1.145122e+08 2.492385e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -1.890000e-05 1.887290e-02 -1.7880e-01 -9.900000e-03 0.000000e+00 9.800000e-03 1.679000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.609430e-02 8.095100e-03 8.8000e-03 9.900000e-03 1.240000e-02 2.030000e-02 5.020000e-02 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.812381e-01 2.937850e-01 0.0000e+00 2.224001e-01 4.753998e-01 7.352008e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.812402e-01 2.937904e-01 0.0000e+00 2.224649e-01 4.753789e-01 7.352262e-01 1.000000e+00 ▇▇▇▇▇
numeric AF_reference 53316 0.9920652 NA NA NA NA NA NA NA 2.828646e-01 2.508425e-01 1.9970e-04 7.727640e-02 2.032750e-01 4.369010e-01 1.000000e+00 ▇▃▂▂▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 2.062050e+04 2.225197e+03 1.3564e+04 1.873700e+04 2.167800e+04 2.259300e+04 2.259300e+04 ▁▂▂▃▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 49298 rs200943160 T C 0.0023 0.0116 0.8442001 0.8428292 NA 0.7821490 16660
1 54676 rs2462492 C T -0.0043 0.0123 0.7290998 0.7266438 NA NA 16660
1 86028 rs114608975 T C -0.0089 0.0223 0.6902001 0.6898172 NA 0.0277556 16165
1 91536 rs6702460 G T -0.0126 0.0121 0.2971002 0.2977260 NA 0.4207270 16660
1 234313 rs8179466 C T -0.0273 0.0269 0.3109997 0.3101679 NA NA 16165
1 534192 rs6680723 C T 0.0174 0.0141 0.2167999 0.2171870 NA NA 16660
1 546697 rs12025928 A G 0.0140 0.0198 0.4812004 0.4795225 NA NA 16165
1 693731 rs12238997 A G -0.0187 0.0166 0.2597000 0.2599514 NA 0.1417730 16806
1 705882 rs72631875 G A -0.0135 0.0230 0.5578995 0.5572329 NA 0.0315495 16165
1 706368 rs55727773 A G -0.0098 0.0109 0.3654997 0.3686087 NA 0.2751600 16660
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51218377 rs2519461 G C 0.0174 0.0185 0.3483999 0.3469404 NA 0.0826677 19232
22 51219006 rs28729663 G A 0.0036 0.0143 0.8010000 0.8012357 NA 0.2052720 19106
22 51219387 rs9616832 T C 0.0117 0.0199 0.5554002 0.5565728 NA 0.0654952 16660
22 51219704 rs147475742 G A 0.0127 0.0247 0.6065003 0.6071331 NA 0.0473243 18737
22 51221190 rs369304721 G A 0.0232 0.0221 0.2941000 0.2938221 NA NA 18737
22 51221731 rs115055839 T C 0.0114 0.0200 0.5675002 0.5686777 NA 0.0625000 16660
22 51222100 rs114553188 G T 0.0020 0.0221 0.9277001 0.9278917 NA 0.0880591 18737
22 51223637 rs375798137 G A 0.0024 0.0222 0.9132000 0.9139099 NA 0.0788738 18737
22 51229805 rs9616985 T C 0.0133 0.0200 0.5068005 0.5060505 NA 0.0730831 16660
22 51237063 rs3896457 T C -0.0080 0.0112 0.4772995 0.4750505 NA 0.2050720 17301

bcf preview

1   49298   rs10399793  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0023:0.0116:0.0735546:16660:rs10399793
1   54676   rs2462492   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0043:0.0123:0.137213:16660:rs2462492
1   86028   rs114608975 T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0089:0.0223:0.161025:16165:rs114608975
1   91536   rs1251109649    G   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0126:0.0121:0.527097:16660:rs1251109649
1   234313  rs8179466   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0273:0.0269:0.50724:16165:rs8179466
1   534192  rs6680723   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0174:0.0141:0.663941:16660:rs6680723
1   546697  rs12025928  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.014:0.0198:0.317674:16165:rs12025928
1   693731  rs12238997  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0187:0.0166:0.585528:16806:rs12238997
1   705882  rs72631875  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0135:0.023:0.253444:16165:rs72631875
1   706368  rs963699400 A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0098:0.0109:0.437113:16660:rs963699400
1   714596  rs149887893 T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0098:0.0311:0.12332:16165:rs149887893
1   715265  rs12184267  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0213:0.0299:0.322667:16165:rs12184267
1   715367  rs12184277  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0187:0.0299:0.273925:16165:rs12184277
1   717485  rs12184279  C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0221:0.0301:0.334044:16165:rs12184279
1   720381  rs116801199 G   T   .   PASS    .   ES:SE:LP:SS:ID  0.0207:0.0301:0.308388:16165:rs116801199
1   721290  rs12565286  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0219:0.0299:0.334513:16165:rs12565286
1   722670  rs116030099 T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0061:0.0194:0.121766:16165:rs116030099
1   723891  rs2977670   G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0118:0.0273:0.176526:16165:rs2977670
1   726794  rs28454925  C   G   .   PASS    .   ES:SE:LP:SS:ID  0.0285:0.0299:0.46916:16165:rs28454925
1   729632  rs116720794 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0322:0.0298:0.553774:16165:rs116720794
1   729679  rs4951859   C   G   .   PASS    .   ES:SE:LP:SS:ID  0.0072:0.0145:0.207328:17301:rs4951859
1   730087  rs148120343 T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0187:0.0237:0.366835:16165:rs148120343
1   731718  rs58276399  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0133:0.0159:0.394695:17432:rs58276399
1   732989  rs369030935 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0403:0.0385:0.529149:16165:rs369030935
1   734349  rs141242758 T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0148:0.0159:0.453334:17432:rs141242758
1   736289  rs1254887344    T   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0082:0.0156:0.221632:17301:rs1254887344
1   752478  rs146277091 G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0209:0.0296:0.318036:16165:rs146277091
1   752566  rs3094315   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0065:0.0139:0.195588:18496:rs3094315
1   752721  rs3131972   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.004:0.014:0.111147:17927:rs3131972
1   753405  rs3115860   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0079:0.0151:0.22062:17432:rs3115860
1   753541  rs1388595942    G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0081:0.0155:0.219539:17432:rs1388595942
1   754063  rs12184312  G   T   .   PASS    .   ES:SE:LP:SS:ID  0.0198:0.0297:0.297311:16165:rs12184312
1   754105  rs12184325  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0192:0.0298:0.284164:16165:rs12184325
1   754182  rs3131969   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0054:0.0151:0.141944:17432:rs3131969
1   754192  rs3131968   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0054:0.0151:0.141944:17432:rs3131968
1   754211  rs12184313  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0219:0.0296:0.337053:16165:rs12184313
1   754334  rs3131967   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0052:0.0151:0.136558:17432:rs3131967
1   754503  rs3115859   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0035:0.014:0.094366:17927:rs3115859
1   754629  rs10454459  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0207:0.0296:0.31399:16165:rs10454459
1   754964  rs3131966   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0052:0.014:0.148497:17927:rs3131966
1   755775  rs3131965   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0074:0.014:0.223154:17927:rs3131965
1   755890  rs1280367067    A   T   .   PASS    .   ES:SE:LP:SS:ID  0.0081:0.0151:0.228339:17432:rs1280367067
1   756604  rs3131962   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0079:0.0151:0.223371:17432:rs3131962
1   757640  rs3115853   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0054:0.015:0.143694:17432:rs3115853
1   757734  rs1557551770    C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0082:0.0151:0.233513:17432:rs1557551770
1   757936  rs1360886751    C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0082:0.0151:0.233513:17432:rs1360886751
1   758144  rs3131956   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0082:0.0151:0.233513:17432:rs3131956
1   758626  rs3131954   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.008:0.0151:0.225994:17432:rs3131954
1   759036  rs114525117 G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0175:0.03:0.252045:16165:rs114525117
1   760912  rs1048488   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0054:0.014:0.156331:17927:rs1048488