Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4836,TotalVariants=7210035,VariantsNotRead=0,HarmonisedVariants=7210025,VariantsNotHarmonised=10,SwitchedAlleles=3298941,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-vcf/inputs/-261044475/upload.txt.gz --id ieu-b-4836 --json /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-vcf/inputs/-261044475/ieu-b-4836_data.json --ref /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4836/ieu-b-4836.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T09:49:58.629253",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-report/inputs/-261044475/ieu-b-4836.vcf.gz; Date=Wed Jan  5 10:08:24 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-ldsc/inputs/-261044475/ieu-b-4836.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4836/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 10:00:33 2022
Reading summary statistics from /data/cromwell-executions/qc/9dd0abd6-c30f-4f12-9541-e7db8e61136c/call-ldsc/inputs/-261044475/ieu-b-4836.vcf.gz ...
Read summary statistics for 7209997 SNPs.
Dropped 19875 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1201526 SNPs remain.
After merging with regression SNP LD, 1201526 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.1377 (0.0089)
Lambda GC: 1.4069
Mean Chi^2: 1.4362
Intercept: 1.1735 (0.0092)
Ratio: 0.3977 (0.0211)
Analysis finished at Wed Jan  5 10:02:16 2022
Total time elapsed: 1.0m:42.66s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.3726,
    "mean_EFFECT": -0.0003,
    "n": 102112,
    "n_snps": 7210025,
    "n_clumped_hits": 24,
    "n_p_sig": 527,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 7210025,
    "n_miss_AF_reference": 48695,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1201526,
    "ldsc_nsnp_merge_regression_ld": 1201526,
    "ldsc_observed_scale_h2_beta": 0.1377,
    "ldsc_observed_scale_h2_se": 0.0089,
    "ldsc_intercept_beta": 1.1735,
    "ldsc_intercept_se": 0.0092,
    "ldsc_lambda_gc": 1.4069,
    "ldsc_mean_chisq": 1.4362,
    "ldsc_ratio": 0.3978
}
 

Flags

name value
af_correlation NA
inflation_factor TRUE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 11 0.9999985 3 58 0 7209987 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 7210025 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.638468e+00 5.748373e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.887007e+07 5.638044e+07 8.2800e+02 3.243537e+07 6.946602e+07 1.147268e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -2.807000e-04 1.090190e-02 -1.0950e-01 -5.600000e-03 -2.000000e-04 5.200000e-03 1.324000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 8.233300e-03 4.810800e-03 4.0000e-03 4.700000e-03 6.100000e-03 1.020000e-02 2.800000e-02 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.491242e-01 3.000722e-01 0.0000e+00 1.774999e-01 4.294000e-01 7.076003e-01 1.000000e+00 ▇▆▆▅▅
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.490885e-01 3.001052e-01 0.0000e+00 1.773893e-01 4.291204e-01 7.076605e-01 1.000000e+00 ▇▆▅▅▅
numeric AF_reference 48695 0.9932462 NA NA NA NA NA NA NA 2.663141e-01 2.522568e-01 1.9970e-04 5.930510e-02 1.809110e-01 4.147360e-01 1.000000e+00 ▇▃▂▁▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 9.471564e+04 9.955105e+03 6.1273e+04 9.385900e+04 9.865800e+04 1.015540e+05 1.021120e+05 ▁▁▁▁▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 693731 rs12238997 A G -0.0080 0.0084 0.3387997 0.3409038 NA 0.141773 61428
1 731718 rs142557973 T C -0.0071 0.0083 0.3886002 0.3923177 NA 0.154353 61428
1 734349 rs141242758 T C -0.0074 0.0083 0.3723000 0.3726255 NA 0.152556 61428
1 736289 rs79010578 T A -0.0037 0.0081 0.6448994 0.6478219 NA 0.139577 62093
1 752566 rs3094315 G A 0.0052 0.0075 0.4911001 0.4881004 NA 0.718251 61286
1 753541 rs2073813 G A -0.0081 0.0079 0.3064997 0.3052139 NA 0.301917 62755
1 766007 rs61768174 A C -0.0043 0.0086 0.6199005 0.6170751 NA 0.091254 61428
1 768253 rs2977608 A C 0.0015 0.0063 0.8059001 0.8118072 NA 0.489417 62093
1 768448 rs12562034 G A 0.0073 0.0090 0.4130000 0.4173019 NA 0.191893 62093
1 769223 rs60320384 C G -0.0087 0.0080 0.2775000 0.2768159 NA 0.191294 62197
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51198906 rs6010079 G A -0.0002 0.0105 0.9813000 0.9848031 NA 0.0421326 65299
22 51202748 rs9616963 A G -0.0026 0.0105 0.8009000 0.8044292 NA 0.0391374 65299
22 51208537 rs72619593 G A -0.0086 0.0082 0.2941000 0.2942792 NA 0.1142170 62093
22 51208568 rs148425445 G T -0.0146 0.0114 0.2006998 0.2002984 NA 0.1160140 69370
22 51210289 rs112565862 C T -0.0112 0.0083 0.1743998 0.1772093 NA 0.1018370 62093
22 51211031 rs9616968 A G 0.0043 0.0108 0.6866999 0.6905210 NA 0.0373403 65299
22 51213613 rs34726907 C T -0.0085 0.0082 0.2963002 0.2999291 NA 0.1727240 64843
22 51216564 rs9616970 T C -0.0088 0.0081 0.2775997 0.2772933 NA 0.1563500 64843
22 51222100 rs114553188 G T -0.0198 0.0119 0.0966407 0.0961393 NA 0.0880591 64443
22 51223637 rs375798137 G A -0.0172 0.0119 0.1489999 0.1483517 NA 0.0788738 64443

bcf preview

1   693731  rs12238997  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.0084:0.470057:61428:rs12238997
1   731718  rs58276399  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0071:0.0083:0.410497:61428:rs58276399
1   734349  rs141242758 T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0074:0.0083:0.429107:61428:rs141242758
1   736289  rs1254887344    T   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0037:0.0081:0.190508:62093:rs1254887344
1   752566  rs3094315   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0052:0.0075:0.30883:61286:rs3094315
1   753541  rs1388595942    G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0081:0.0079:0.51357:62755:rs1388595942
1   766007  rs61768174  A   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0043:0.0086:0.207678:61428:rs61768174
1   768253  rs2977608   A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0015:0.0063:0.0937188:62093:rs2977608
1   768448  rs12562034  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0073:0.009:0.38405:62093:rs12562034
1   769223  rs60320384  C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0087:0.008:0.556737:62197:rs60320384
1   771967  rs59066358  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0098:0.008:0.66615:62755:rs59066358
1   777232  rs112618790 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0097:0.0094:0.514279:62093:rs112618790
1   778745  rs1055606   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0089:0.008:0.571217:62197:rs1055606
1   779322  rs4040617   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0087:0.008:0.555487:62197:rs4040617
1   781845  rs1391043716    A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0061:0.0087:0.31399:61428:rs1391043716
1   782981  rs6594026   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0096:0.008:0.635637:62197:rs6594026
1   787606  rs3863622   G   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0098:0.008:0.651111:62197:rs3863622
1   790465  rs61768207  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0116:0.0089:0.72262:61428:rs61768207
1   791191  rs111818025 G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.01:0.008:0.668573:62197:rs111818025
1   791853  rs6684487   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0086:0.0095:0.440093:62093:rs6684487
1   794332  rs12127425  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0057:0.0103:0.236947:61428:rs12127425
1   795222  rs12131377  C   G   .   PASS    .   ES:SE:LP:SS:ID  0.0063:0.0102:0.26825:61428:rs12131377
1   795988  rs59380221  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0056:0.0081:0.306625:61428:rs59380221
1   796100  rs12132398  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0053:0.0102:0.216597:61428:rs12132398
1   796375  rs1338880683    T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.011:0.0082:0.741123:61986:rs1338880683
1   797281  rs1347695410    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0043:0.0102:0.173213:61428:rs1347695410
1   797325  rs1338750774    T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0043:0.0102:0.173213:61428:rs1338750774
1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0028:0.0068:0.164246:87290:rs58013264
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0041:0.0055:0.334982:89282:rs10900604
1   798801  rs12132517  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0045:0.0102:0.181774:61428:rs12132517
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0031:0.0054:0.248259:93153:rs11240777
1   799499  rs147634896 T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0029:0.0102:0.108463:61428:rs147634896
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0018:0.0069:0.102758:86625:rs61768212
1   801661  rs12132974  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0022:0.0103:0.080399:61428:rs12132974
1   801680  rs12134490  A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0017:0.0103:0.0607304:61428:rs12134490
1   801858  rs17276806  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0021:0.0103:0.0769633:61428:rs17276806
1   802856  rs139867617 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0017:0.0103:0.0626828:61428:rs139867617
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0019:0.0069:0.104191:86625:rs7526310
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0067:0.0053:0.672028:87955:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0073:0.0053:0.75721:87955:rs1247187939
1   809876  rs57181708  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0091:0.0091:0.497573:61428:rs57181708
1   810286  rs28410559  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.0083:0.474566:61428:rs28410559
1   812743  rs6605064   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0092:0.0083:0.56671:61428:rs6605064
1   824398  rs7538305   A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0011:0.0081:0.0475466:61428:rs7538305
1   830181  rs28444699  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0077:0.006:0.6874:62093:rs28444699
1   831489  rs4970385   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0103:0.006:1.07702:62093:rs4970385
1   831909  rs9697642   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0103:0.006:1.06485:62093:rs9697642
1   832066  rs9697380   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0101:0.006:1.04278:62093:rs9697380
1   832318  rs4500250   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0102:0.006:1.05394:62093:rs4500250
1   832398  rs4553118   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0123:0.0061:1.34361:62093:rs4553118