Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4825,TotalVariants=7227329,VariantsNotRead=0,HarmonisedVariants=7227329,VariantsNotHarmonised=0,SwitchedAlleles=3233024,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-vcf/inputs/-261044507/upload.txt.gz --id ieu-b-4825 --json /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-vcf/inputs/-261044507/ieu-b-4825_data.json --ref /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4825/ieu-b-4825.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T08:33:29.013558",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-report/inputs/-261044507/ieu-b-4825.vcf.gz; Date=Wed Jan  5 08:51:31 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-ldsc/inputs/-261044507/ieu-b-4825.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4825/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 08:43:27 2022
Reading summary statistics from /data/cromwell-executions/qc/afbb0c63-22cb-486a-897a-163f8de3411d/call-ldsc/inputs/-261044507/ieu-b-4825.vcf.gz ...
Read summary statistics for 7227274 SNPs.
Dropped 35625 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1182558 SNPs remain.
After merging with regression SNP LD, 1182558 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0617 (0.0491)
Lambda GC: 1.0146
Mean Chi^2: 1.0153
Intercept: 1.0043 (0.0062)
Ratio: 0.2819 (0.4039)
Analysis finished at Wed Jan  5 08:45:05 2022
Total time elapsed: 1.0m:38.39s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.0174,
    "mean_EFFECT": -0.0004,
    "n": 9000,
    "n_snps": 7227329,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 252547,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 7227329,
    "n_miss_AF_reference": 146003,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1182558,
    "ldsc_nsnp_merge_regression_ld": 1182558,
    "ldsc_observed_scale_h2_beta": 0.0617,
    "ldsc_observed_scale_h2_se": 0.0491,
    "ldsc_intercept_beta": 1.0043,
    "ldsc_intercept_se": 0.0062,
    "ldsc_lambda_gc": 1.0146,
    "ldsc_mean_chisq": 1.0153,
    "ldsc_ratio": 0.281
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 13 0.9999982 3 58 0 7227213 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 43 0 14891 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 44 0 5406 0 NA NA NA NA NA NA NA NA NA NA
logical AF 7227329 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.649468e+00 5.755541e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.899276e+07 5.639184e+07 3.0200e+02 3.266801e+07 6.969762e+07 1.147510e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -4.348000e-04 2.134214e-01 -1.9116e+00 -1.101000e-01 2.000000e-04 1.089000e-01 2.466200e+00 ▁▂▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.885128e-01 9.627220e-02 8.0300e-02 1.172000e-01 1.466000e-01 2.285000e-01 7.521000e-01 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.974665e-01 2.893504e-01 1.0000e-07 2.462000e-01 4.962997e-01 7.483004e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.974666e-01 2.893504e-01 1.0000e-07 2.462089e-01 4.962732e-01 7.482734e-01 1.000000e+00 ▇▇▇▇▇
numeric AF_reference 146003 0.9797985 NA NA NA NA NA NA NA 2.851437e-01 2.502800e-01 1.9970e-04 7.987220e-02 2.064700e-01 4.404950e-01 1.000000e+00 ▇▃▂▂▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 8.105477e+03 1.043829e+03 5.2830e+03 7.200000e+03 8.701000e+03 9.000000e+03 9.000000e+03 ▁▃▁▁▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 797440 rs58013264 T C 0.0245 0.1703 0.8856999 0.8856080 NA 0.189497 7797
1 798400 rs10900604 A G 0.0724 0.1417 0.6089996 0.6093940 NA 0.410543 7942
1 798959 rs11240777 G A 0.0736 0.1417 0.6031995 0.6034768 NA 0.409944 7942
1 801467 rs61768212 G C 0.0098 0.1701 0.9538000 0.9540568 NA 0.193091 7797
1 804759 rs7526310 C T -0.0035 0.1705 0.9837000 0.9836223 NA 0.193890 7797
1 808223 rs4951933 G C -0.1585 0.1521 0.2976001 0.2973757 NA 0.452077 6349
1 808631 rs11240779 G A -0.0465 0.1396 0.7390997 0.7390629 NA 0.453474 7649
1 808928 rs11240780 C T -0.0391 0.1396 0.7796003 0.7794116 NA 0.452276 7649
1 845274 rs112856858 G T -0.0368 0.1566 0.8142999 0.8142137 NA 0.374002 6349
1 845635 rs117086422 C T -0.0941 0.1414 0.5060006 0.5057384 NA 0.158546 7942
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51172460 rs5770824 T C 0.1620 0.4725 0.7316999 0.7317059 NA 0.0684904 6349
22 51177257 rs73174437 C T -0.3110 0.3771 0.4095001 0.4095335 NA 0.0091853 6349
22 51178607 rs6010067 G C 0.1120 0.4845 0.8171000 0.8171857 NA 0.0814696 6349
22 51180878 rs6010069 A G -0.0541 0.1727 0.7539994 0.7540831 NA 0.1589460 6349
22 51180959 rs6010070 A G -0.0542 0.1727 0.7537998 0.7536433 NA 0.2056710 6349
22 51181685 rs34756634 G A -0.1311 0.1953 0.5020997 0.5020454 NA 0.7118610 6349
22 51181687 rs9616955 A T 0.1562 0.2760 0.5714997 0.5714332 NA 0.0485224 6349
22 51181759 rs13056621 A G -0.1916 0.1835 0.2965002 0.2964198 NA 0.6761180 8290
22 51182090 rs28516879 G A 0.0802 0.2307 0.7282995 0.7281123 NA 0.0467252 8145
22 51185848 rs3865764 G A -0.0888 0.3079 0.7728995 0.7730365 NA 0.9776360 6349

bcf preview

1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0245:0.1703:0.0527134:7797:rs58013264
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0724:0.1417:0.215383:7942:rs10900604
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0736:0.1417:0.219539:7942:rs11240777
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0098:0.1701:0.0205427:7797:rs61768212
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0035:0.1705:0.00713733:7797:rs7526310
1   808223  rs1557576983    G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.1585:0.1521:0.526367:6349:rs1557576983
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0465:0.1396:0.131297:7649:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0391:0.1396:0.108128:7649:rs1247187939
1   845274  rs1324283754    G   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0368:0.1566:0.0892156:6349:rs1324283754
1   845635  rs117086422 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0941:0.1414:0.295849:7942:rs117086422
1   845938  rs57760052  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0809:0.1408:0.247567:7942:rs57760052
1   846078  rs778265812 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0954:0.1479:0.284833:7942:rs778265812
1   846398  rs58781670  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0617:0.1421:0.177636:7942:rs58781670
1   846808  rs4475691   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0721:0.1477:0.203842:7942:rs4475691
1   846864  rs1269142199    G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0838:0.1481:0.243136:7942:rs1269142199
1   847228  rs3905286   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0668:0.1452:0.190104:7942:rs3905286
1   847491  rs1158719307    G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0962:0.1429:0.300249:7942:rs1158719307
1   848090  rs4246505   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1249:0.1434:0.416008:7942:rs4246505
1   848445  rs1156895099    G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1015:0.1433:0.319846:7942:rs1156895099
1   848456  rs11507767  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.1023:0.1433:0.322758:7942:rs11507767
1   848738  rs3829741   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1231:0.1435:0.407823:7942:rs3829741
1   850062  rs28723578  A   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0897:0.1426:0.276134:7942:rs28723578
1   850123  rs28622257  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1129:0.1431:0.366431:7942:rs28622257
1   851190  rs28609852  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0884:0.1427:0.271078:7942:rs28609852
1   851204  rs28552953  G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0771:0.1425:0.230327:7942:rs28552953
1   852664  rs28605311  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0951:0.1442:0.292771:7942:rs28605311
1   852758  rs4970462   G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0943:0.1443:0.289629:7942:rs4970462
1   853239  rs4970380   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0929:0.1443:0.284164:7942:rs4970380
1   854250  rs7537756   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0727:0.1438:0.212398:7942:rs7537756
1   856436  rs34105146  TG  T   .   PASS    .   ES:SE:LP:SS:ID  -0.0269:0.163:0.0609302:6349:rs34105146
1   856476  rs4040605   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0172:0.1191:0.0530077:7942:rs4040605
1   858040  rs4970460   C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1117:0.1409:0.368658:7942:rs4970460
1   858051  rs4970459   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1115:0.1408:0.368252:7942:rs4970459
1   858801  rs7418179   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.1154:0.1346:0.407823:7942:rs7418179
1   859685  rs111572704 G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1011:0.1573:0.283663:6349:rs111572704
1   860416  rs61464428  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.1257:0.1345:0.455932:7942:rs61464428
1   860461  rs57465118  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.2139:0.3462:0.270268:6349:rs57465118
1   860521  rs57924093  C   A   .   PASS    .   ES:SE:LP:SS:ID  0.2139:0.3462:0.270268:6349:rs57924093
1   860688  rs60837925  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.126:0.1345:0.45705:7942:rs60837925
1   861008  rs28521172  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.2139:0.3462:0.270268:6349:rs28521172
1   861630  rs2879816   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.124:0.1345:0.448062:7942:rs2879816
1   861808  rs13302982  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.2139:0.3462:0.270268:6349:rs13302982
1   862093  rs1210451934    T   C   .   PASS    .   ES:SE:LP:SS:ID  0.2216:0.3459:0.282662:6349:rs1210451934
1   862124  rs13303101  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.2026:0.3449:0.254145:6349:rs13303101
1   862383  rs6680268   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.2131:0.3456:0.269622:6349:rs6680268
1   862389  rs534606253 A   G   .   PASS    .   ES:SE:LP:SS:ID  0.2139:0.3462:0.270268:6349:rs534606253
1   862866  rs3892970   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.1038:0.1332:0.360613:7942:rs3892970
1   863124  rs4040604   G   T   .   PASS    .   ES:SE:LP:SS:ID  0.2245:0.346:0.28693:6349:rs4040604
1   864002  rs1806501   G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0981:0.1417:0.310869:7942:rs1806501
1   864938  rs1185651409    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.1035:0.1321:0.363412:7942:rs1185651409