Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4824,TotalVariants=6972488,VariantsNotRead=0,HarmonisedVariants=6972488,VariantsNotHarmonised=0,SwitchedAlleles=3128165,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-vcf/inputs/-261044508/upload.txt.gz --id ieu-b-4824 --json /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-vcf/inputs/-261044508/ieu-b-4824_data.json --ref /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4824/ieu-b-4824.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T05:20:36.660962",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-report/inputs/-261044508/ieu-b-4824.vcf.gz; Date=Wed Jan  5 05:37:14 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-ldsc/inputs/-261044508/ieu-b-4824.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4824/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 05:29:47 2022
Reading summary statistics from /data/cromwell-executions/qc/18912e94-02ef-4aae-b1f9-faed4a5c5eb8/call-ldsc/inputs/-261044508/ieu-b-4824.vcf.gz ...
Read summary statistics for 6972433 SNPs.
Dropped 34341 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1168928 SNPs remain.
After merging with regression SNP LD, 1168928 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0934 (0.043)
Lambda GC: 1.0431
Mean Chi^2: 1.049
Intercept: 1.0269 (0.0071)
Ratio: 0.5491 (0.1443)
Analysis finished at Wed Jan  5 05:31:18 2022
Total time elapsed: 1.0m:30.56s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.047,
    "mean_EFFECT": 0.0014,
    "n": 11859,
    "n_snps": 6972488,
    "n_clumped_hits": 3,
    "n_p_sig": 51,
    "n_mono": 0,
    "n_ns": 242960,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 6972488,
    "n_miss_AF_reference": 137367,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1168928,
    "ldsc_nsnp_merge_regression_ld": 1168928,
    "ldsc_observed_scale_h2_beta": 0.0934,
    "ldsc_observed_scale_h2_se": 0.043,
    "ldsc_intercept_beta": 1.0269,
    "ldsc_intercept_se": 0.0071,
    "ldsc_lambda_gc": 1.0431,
    "ldsc_mean_chisq": 1.049,
    "ldsc_ratio": 0.549
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 13 0.9999981 3 58 0 6972383 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 43 0 14371 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 44 0 5169 0 NA NA NA NA NA NA NA NA NA NA
logical AF 6972488 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.651440e+00 5.756353e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.897793e+07 5.640312e+07 3.0200e+02 3.262478e+07 6.968164e+07 1.147591e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 1.433000e-03 1.024111e-01 -9.0600e-01 -5.540000e-02 9.000000e-04 5.780000e-02 1.060800e+00 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 9.218800e-02 3.935830e-02 5.3900e-02 6.110000e-02 7.560000e-02 1.129000e-01 2.490000e-01 ▇▂▂▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.928291e-01 2.905292e-01 0.0000e+00 2.397000e-01 4.901003e-01 7.443000e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.928290e-01 2.905296e-01 0.0000e+00 2.397245e-01 4.900709e-01 7.443312e-01 1.000000e+00 ▇▇▇▇▇
numeric AF_reference 137367 0.9802987 NA NA NA NA NA NA NA 2.925070e-01 2.493129e-01 1.9970e-04 8.765970e-02 2.164540e-01 4.498800e-01 1.000000e+00 ▇▃▂▂▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 1.142526e+04 5.490776e+02 1.0527e+04 1.093100e+04 1.185900e+04 1.185900e+04 1.185900e+04 ▃▁▁▂▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 797440 rs58013264 T C -0.0865 0.0892 0.3319999 0.3321806 NA 0.189497 10931
1 798400 rs10900604 A G -0.1260 0.0733 0.0854791 0.0856211 NA 0.410543 10931
1 798959 rs11240777 G A -0.1260 0.0733 0.0854791 0.0856211 NA 0.409944 10931
1 801467 rs61768212 G C -0.0857 0.0887 0.3343998 0.3339551 NA 0.193091 10931
1 804759 rs7526310 C T -0.0891 0.0889 0.3162999 0.3162230 NA 0.193890 10931
1 808223 rs4951933 G C 0.1209 0.0723 0.0947393 0.0944851 NA 0.452077 10527
1 808631 rs11240779 G A 0.1206 0.0718 0.0931108 0.0930224 NA 0.453474 10527
1 808928 rs11240780 C T 0.1242 0.0718 0.0837105 0.0836651 NA 0.452276 10527
1 845274 rs112856858 G T 0.0407 0.0753 0.5887000 0.5888491 NA 0.374002 10527
1 845635 rs117086422 C T 0.0497 0.0728 0.4947001 0.4948013 NA 0.158546 10931
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51167244 rs143213926 AG A 0.0343 0.1266 0.7864009 0.7864433 NA 0.0319489 10527
22 51171497 rs2301584 G A 0.1218 0.0758 0.1081999 0.1080850 NA 0.2533950 10527
22 51177257 rs73174437 C T -0.0373 0.1689 0.8252000 0.8252164 NA 0.0091853 10527
22 51180878 rs6010069 A G -0.0071 0.0777 0.9267001 0.9271930 NA 0.1589460 10527
22 51180959 rs6010070 A G 0.0055 0.0777 0.9439000 0.9435688 NA 0.2056710 10527
22 51181685 rs34756634 G A -0.0271 0.0851 0.7499995 0.7501445 NA 0.7118610 10527
22 51181687 rs9616955 A T 0.0261 0.1259 0.8360000 0.8357698 NA 0.0485224 10527
22 51181759 rs13056621 A G -0.0343 0.0900 0.7030998 0.7031208 NA 0.6761180 10527
22 51182090 rs28516879 G A -0.0089 0.1159 0.9390000 0.9387903 NA 0.0467252 10527
22 51185848 rs3865764 G A 0.0886 0.1425 0.5339001 0.5341034 NA 0.9776360 10527

bcf preview

1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0865:0.0892:0.478862:10931:rs58013264
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.126:0.0733:1.06814:10931:rs10900604
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.126:0.0733:1.06814:10931:rs11240777
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0857:0.0887:0.475734:10931:rs61768212
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0891:0.0889:0.499901:10931:rs7526310
1   808223  rs1557576983    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.1209:0.0723:1.02347:10527:rs1557576983
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.1206:0.0718:1.031:10527:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  0.1242:0.0718:1.07722:10527:rs1247187939
1   845274  rs1324283754    G   T   .   PASS    .   ES:SE:LP:SS:ID  0.0407:0.0753:0.230106:10527:rs1324283754
1   845635  rs117086422 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0497:0.0728:0.305658:10931:rs117086422
1   845938  rs57760052  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0648:0.0724:0.43086:10931:rs57760052
1   846078  rs778265812 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0317:0.0744:0.174185:10931:rs778265812
1   846398  rs58781670  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0595:0.0739:0.376027:10931:rs58781670
1   846808  rs4475691   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0354:0.0743:0.198459:10931:rs4475691
1   846864  rs1269142199    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0271:0.0744:0.145512:10931:rs1269142199
1   847228  rs3905286   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0284:0.073:0.156767:10931:rs3905286
1   847491  rs1158719307    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0539:0.0718:0.344189:10931:rs1158719307
1   848090  rs4246505   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0535:0.0719:0.340274:10931:rs4246505
1   848445  rs1156895099    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0658:0.072:0.442854:10931:rs1156895099
1   848456  rs11507767  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0674:0.0719:0.457673:10931:rs11507767
1   848738  rs3829741   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0535:0.0719:0.340274:10931:rs3829741
1   850062  rs28723578  A   T   .   PASS    .   ES:SE:LP:SS:ID  0.0496:0.0718:0.310159:10931:rs28723578
1   850123  rs28622257  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0512:0.072:0.321937:10931:rs28622257
1   851190  rs28609852  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0493:0.0718:0.307506:10931:rs28609852
1   851204  rs28552953  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0288:0.0711:0.164183:10931:rs28552953
1   852664  rs28605311  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0413:0.0726:0.244888:10931:rs28605311
1   852758  rs4970462   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0391:0.0725:0.229369:10931:rs4970462
1   853239  rs4970380   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0391:0.0725:0.229369:10931:rs4970380
1   854250  rs7537756   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0451:0.0724:0.273191:10931:rs7537756
1   856436  rs34105146  TG  T   .   PASS    .   ES:SE:LP:SS:ID  0.0568:0.0754:0.345823:10527:rs34105146
1   856476  rs4040605   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0117:0.0613:0.0710412:10931:rs4040605
1   858040  rs4970460   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0585:0.0708:0.388808:10931:rs4970460
1   858051  rs4970459   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0566:0.0708:0.372839:10931:rs4970459
1   858801  rs7418179   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.091:0.0697:0.717151:10931:rs7418179
1   859685  rs111572704 G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0568:0.0734:0.357931:10527:rs111572704
1   860416  rs61464428  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0903:0.0697:0.709298:10931:rs61464428
1   860688  rs60837925  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0866:0.0698:0.66736:10931:rs60837925
1   861630  rs2879816   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0895:0.0697:0.700493:10931:rs2879816
1   862866  rs3892970   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0914:0.0697:0.721475:10931:rs3892970
1   864002  rs1806501   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0406:0.0705:0.248567:10931:rs1806501
1   864938  rs1185651409    G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0652:0.0685:0.467118:10931:rs1185651409
1   865219  rs75551395  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0381:0.0705:0.23018:10931:rs75551395
1   866893  rs2880024   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0194:0.0595:0.128077:10931:rs2880024
1   866938  rs74047407  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0544:0.0691:0.365624:10931:rs74047407
1   867635  rs76964081  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0447:0.0704:0.279593:10931:rs76964081
1   869303  rs113171913 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0035:0.0671:0.0184079:10527:rs113171913
1   870645  rs28576697  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0437:0.0641:0.305395:10931:rs28576697
1   870651  rs76294260  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.2576:0.1984:0.711751:10527:rs76294260
1   871334  rs4072383   G   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0343:0.0643:0.226726:10931:rs4072383
1   872352  rs1445142858    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0126:0.0652:0.0722191:10931:rs1445142858