Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4815,TotalVariants=7191606,VariantsNotRead=0,HarmonisedVariants=7191598,VariantsNotHarmonised=8,SwitchedAlleles=3290929,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-vcf/inputs/-261044538/upload.txt.gz --id ieu-b-4815 --json /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-vcf/inputs/-261044538/ieu-b-4815_data.json --ref /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4815/ieu-b-4815.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T04:46:32.418970",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-report/inputs/-261044538/ieu-b-4815.vcf.gz; Date=Wed Jan  5 05:07:38 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-ldsc/inputs/-261044538/ieu-b-4815.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4815/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 04:59:44 2022
Reading summary statistics from /data/cromwell-executions/qc/0e008373-d7ee-4076-8058-9ba83a48dcd8/call-ldsc/inputs/-261044538/ieu-b-4815.vcf.gz ...
Read summary statistics for 7191573 SNPs.
Dropped 19717 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1199274 SNPs remain.
After merging with regression SNP LD, 1199274 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.1957 (0.0145)
Lambda GC: 1.1754
Mean Chi^2: 1.2098
Intercept: 1.0173 (0.0079)
Ratio: 0.0826 (0.0375)
Analysis finished at Wed Jan  5 05:01:23 2022
Total time elapsed: 1.0m:39.17s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.1494,
    "mean_EFFECT": -0.0002,
    "n": 51852,
    "n_snps": 7191598,
    "n_clumped_hits": 11,
    "n_p_sig": 771,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 7191598,
    "n_miss_AF_reference": 46780,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1199274,
    "ldsc_nsnp_merge_regression_ld": 1199274,
    "ldsc_observed_scale_h2_beta": 0.1957,
    "ldsc_observed_scale_h2_se": 0.0145,
    "ldsc_intercept_beta": 1.0173,
    "ldsc_intercept_se": 0.0079,
    "ldsc_lambda_gc": 1.1754,
    "ldsc_mean_chisq": 1.2098,
    "ldsc_ratio": 0.0825
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 8 0.9999989 3 58 0 7191573 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 7191598 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.631819e+00 5.745131e+00 1.000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.892427e+07 5.636321e+07 8.280e+02 3.248775e+07 6.955367e+07 1.147668e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -1.781000e-04 6.506610e-02 -8.122e-01 -3.230000e-02 0.000000e+00 3.190000e-02 7.185000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 5.379030e-02 3.118810e-02 2.370e-02 3.060000e-02 3.990000e-02 6.680000e-02 1.969000e-01 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.770810e-01 2.950111e-01 0.000e+00 2.156001e-01 4.695999e-01 7.322999e-01 1.000000e+00 ▇▇▆▆▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.770808e-01 2.950118e-01 0.000e+00 2.155551e-01 4.696326e-01 7.323234e-01 1.000000e+00 ▇▇▆▆▆
numeric AF_reference 46780 0.9934952 NA NA NA NA NA NA NA 2.661372e-01 2.522957e-01 1.997e-04 5.930510e-02 1.805110e-01 4.143370e-01 1.000000e+00 ▇▃▂▁▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 4.765798e+04 4.791777e+03 2.845e+04 4.576400e+04 4.915100e+04 5.162600e+04 5.185200e+04 ▁▁▂▂▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 768448 rs12562034 G A -0.0909 0.0627 0.1471001 0.1471252 NA 0.1918930 30540
1 777232 rs112618790 C T -0.1027 0.0652 0.1150000 0.1152210 NA 0.0668930 30540
1 791853 rs6684487 G A -0.1148 0.0653 0.0790806 0.0787407 NA 0.0762780 30540
1 794332 rs12127425 G A -0.1408 0.0718 0.0500899 0.0498787 NA 0.1162140 29926
1 796100 rs12132398 C T -0.1344 0.0713 0.0594306 0.0594308 NA 0.0856629 29926
1 797281 rs76631953 G C -0.1305 0.0712 0.0669607 0.0668226 NA 0.0656949 29926
1 797325 rs111739932 T C -0.1291 0.0712 0.0696803 0.0698006 NA 0.0680911 29926
1 797440 rs58013264 T C 0.0812 0.0457 0.0752593 0.0756003 NA 0.1894970 38123
1 798026 rs4951864 C T 0.1327 0.0697 0.0568801 0.0569266 NA 0.8941690 29921
1 798400 rs10900604 A G -0.0061 0.0375 0.8708000 0.8707809 NA 0.4105430 39179
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51196164 rs8136603 A T -0.0646 0.0773 0.4037997 0.4033209 NA 0.1427720 34282
22 51196296 rs9616961 G C 0.0152 0.0698 0.8279999 0.8276122 NA 0.0395367 31822
22 51197576 rs147713773 G C 0.0206 0.0702 0.7693997 0.7691803 NA 0.0471246 31822
22 51197602 rs187225588 T A -0.0681 0.0768 0.3753998 0.3752303 NA 0.0175719 35296
22 51198569 rs142671391 G C -0.0360 0.0815 0.6587005 0.6586934 NA 0.1110220 34282
22 51198906 rs6010079 G A 0.0100 0.0703 0.8864999 0.8868845 NA 0.0421326 31822
22 51202748 rs9616963 A G 0.0175 0.0700 0.8024999 0.8025873 NA 0.0391374 31822
22 51208568 rs148425445 G T -0.0590 0.0761 0.4380997 0.4381650 NA 0.1160140 35296
22 51216564 rs9616970 T C 0.0059 0.0532 0.9124000 0.9116939 NA 0.1563500 29573
22 51222100 rs114553188 G T -0.0474 0.0785 0.5462997 0.5459622 NA 0.0880591 35296

bcf preview

1   768448  rs12562034  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0909:0.0627:0.832387:30540:rs12562034
1   777232  rs112618790 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1027:0.0652:0.939302:30540:rs112618790
1   791853  rs6684487   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1148:0.0653:1.10193:30540:rs6684487
1   794332  rs12127425  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.1408:0.0718:1.30025:29926:rs12127425
1   796100  rs12132398  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1344:0.0713:1.22599:29926:rs12132398
1   797281  rs1347695410    G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.1305:0.0712:1.17418:29926:rs1347695410
1   797325  rs1338750774    T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.1291:0.0712:1.15689:29926:rs1338750774
1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0812:0.0457:1.12344:38123:rs58013264
1   798026  rs4951864   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.1327:0.0697:1.24504:29921:rs4951864
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0061:0.0375:0.0600816:39179:rs10900604
1   798801  rs12132517  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.122:0.0712:1.06278:29926:rs12132517
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0014:0.0364:0.0135418:40774:rs11240777
1   799499  rs147634896 T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.1257:0.0717:1.09871:29926:rs147634896
1   800383  rs4951931   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.1352:0.07:1.27295:30227:rs4951931
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0784:0.0458:1.06093:37810:rs61768212
1   801661  rs12132974  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1344:0.0723:1.20018:29926:rs12132974
1   801680  rs12134490  A   C   .   PASS    .   ES:SE:LP:SS:ID  -0.1299:0.0723:1.13924:29926:rs12134490
1   801858  rs17276806  C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.1298:0.0724:1.1368:29926:rs17276806
1   802856  rs139867617 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.126:0.0725:1.08635:29926:rs139867617
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0767:0.0458:1.02724:37810:rs7526310
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0398:0.0365:0.561458:38424:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0445:0.0365:0.652865:38424:rs1247187939
1   833223  rs13303211  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0092:0.0453:0.0759793:30540:rs13303211
1   833302  rs28752186  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0088:0.0453:0.0726296:30540:rs28752186
1   833824  rs28484835  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0091:0.0453:0.075204:30540:rs28484835
1   833927  rs28593608  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0225:0.047:0.199146:30766:rs28593608
1   834198  rs28385272  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0219:0.047:0.192803:30766:rs28385272
1   834832  rs796468152 G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0077:0.0453:0.0631345:30540:rs796468152
1   834928  rs4422949   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0193:0.047:0.16647:30766:rs4422949
1   834999  rs28570054  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0206:0.047:0.179864:30766:rs28570054
1   835499  rs4422948   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0034:0.0452:0.0266874:30540:rs4422948
1   836529  rs1192410597    C   G   .   PASS    .   ES:SE:LP:SS:ID  0.0174:0.0472:0.14685:30540:rs1192410597
1   836896  rs28705752  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0165:0.0433:0.153354:30766:rs28705752
1   836924  rs72890788  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0105:0.047:0.0848641:30766:rs72890788
1   838387  rs4970384   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.002:0.0471:0.0153377:30766:rs4970384
1   838555  rs4970383   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0189:0.0446:0.172308:30766:rs4970383
1   839103  rs28562941  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0244:0.0432:0.242604:30766:rs28562941
1   841085  rs1264290483    C   G   .   PASS    .   ES:SE:LP:SS:ID  0.0319:0.0455:0.315783:30540:rs1264290483
1   842013  rs1191510089    T   G   .   PASS    .   ES:SE:LP:SS:ID  0.0028:0.0471:0.0207249:30766:rs1191510089
1   845635  rs117086422 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0429:0.0367:0.61493:45093:rs117086422
1   845938  rs57760052  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0338:0.0365:0.451365:45093:rs57760052
1   846078  rs778265812 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.008:0.0377:0.0802422:45093:rs778265812
1   846398  rs58781670  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0364:0.037:0.486916:45093:rs58781670
1   846465  rs60454217  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.2291:0.115:1.33273:41025:rs60454217
1   846543  rs79396034  G   T   .   PASS    .   ES:SE:LP:SS:ID  0.3015:0.1225:1.85981:36561:rs79396034
1   846808  rs4475691   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0041:0.0376:0.0394817:45093:rs4475691
1   846864  rs1269142199    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0039:0.0377:0.037536:44867:rs1269142199
1   847228  rs3905286   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0125:0.0372:0.133122:45093:rs3905286
1   847491  rs1158719307    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0063:0.0368:0.0630341:45093:rs1158719307
1   848090  rs4246505   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.009:0.0368:0.093665:45093:rs4246505