Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-4813,TotalVariants=7190058,VariantsNotRead=0,HarmonisedVariants=7190052,VariantsNotHarmonised=6,SwitchedAlleles=3290265,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-vcf/inputs/-261044540/upload.txt.gz --id ieu-b-4813 --json /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-vcf/inputs/-261044540/ieu-b-4813_data.json --ref /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-4813/ieu-b-4813.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2022-01-05T04:38:38.734083",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-report/inputs/-261044540/ieu-b-4813.vcf.gz; Date=Wed Jan  5 04:58:29 2022"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-ldsc/inputs/-261044540/ieu-b-4813.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-4813/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Wed Jan  5 04:50:39 2022
Reading summary statistics from /data/cromwell-executions/qc/3f53b219-7748-424e-9dd7-03143dcbf53b/call-ldsc/inputs/-261044540/ieu-b-4813.vcf.gz ...
Read summary statistics for 7190027 SNPs.
Dropped 19706 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1198394 SNPs remain.
After merging with regression SNP LD, 1198394 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.3382 (0.0186)
Lambda GC: 1.3423
Mean Chi^2: 1.5578
Intercept: 1.0557 (0.0107)
Ratio: 0.0999 (0.0191)
Analysis finished at Wed Jan  5 04:52:13 2022
Total time elapsed: 1.0m:34.23s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.3021,
    "mean_EFFECT": 0.0002,
    "n": 75030,
    "n_snps": 7190052,
    "n_clumped_hits": 124,
    "n_p_sig": 10583,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 7190052,
    "n_miss_AF_reference": 46751,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1198394,
    "ldsc_nsnp_merge_regression_ld": 1198394,
    "ldsc_observed_scale_h2_beta": 0.3382,
    "ldsc_observed_scale_h2_se": 0.0186,
    "ldsc_intercept_beta": 1.0557,
    "ldsc_intercept_se": 0.0107,
    "ldsc_lambda_gc": 1.3423,
    "ldsc_mean_chisq": 1.5578,
    "ldsc_ratio": 0.0999
}
 

Flags

name value
af_correlation NA
inflation_factor TRUE
n FALSE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 8 0.9999989 3 58 0 7190027 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 7190052 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.630855e+00 5.744864e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.894628e+07 5.636140e+07 8.2800e+02 3.251470e+07 6.958857e+07 1.147814e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 1.670000e-04 7.975170e-02 -1.0049e+00 -3.930000e-02 1.000000e-04 3.960000e-02 9.867000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 6.147380e-02 3.496350e-02 2.7300e-02 3.520000e-02 4.600000e-02 7.690000e-02 2.112000e-01 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.568136e-01 3.004711e-01 0.0000e+00 1.865001e-01 4.415003e-01 7.166993e-01 1.000000e+00 ▇▆▆▆▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.568137e-01 3.004714e-01 0.0000e+00 1.865009e-01 4.415272e-01 7.167305e-01 1.000000e+00 ▇▆▆▆▆
numeric AF_reference 46751 0.9934978 NA NA NA NA NA NA NA 2.660777e-01 2.523029e-01 1.9970e-04 5.910540e-02 1.805110e-01 4.143370e-01 1.000000e+00 ▇▃▂▁▁
numeric N 0 1.0000000 NA NA NA NA NA NA NA 6.957251e+04 6.092366e+03 4.2447e+04 6.720600e+04 7.180700e+04 7.431100e+04 7.503000e+04 ▁▁▁▂▇

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 797440 rs58013264 T C 0.0061 0.0523 0.9076000 0.9071495 NA 0.189497 58335
1 798400 rs10900604 A G -0.0111 0.0428 0.7963000 0.7953684 NA 0.410543 59725
1 798959 rs11240777 G A 0.0029 0.0419 0.9454999 0.9448205 NA 0.409944 61885
1 801467 rs61768212 G C 0.0124 0.0525 0.8137000 0.8132849 NA 0.193091 57957
1 804759 rs7526310 C T 0.0177 0.0526 0.7368006 0.7364924 NA 0.193890 57957
1 808631 rs11240779 G A -0.0199 0.0417 0.6328999 0.6332067 NA 0.453474 58725
1 808928 rs11240780 C T -0.0200 0.0417 0.6315998 0.6315002 NA 0.452276 58725
1 833927 rs28593608 T C 0.0954 0.0523 0.0681193 0.0681382 NA 0.187500 42632
1 834198 rs28385272 T C 0.0979 0.0523 0.0611505 0.0612214 NA 0.168730 42632
1 834928 rs4422949 A G 0.0964 0.0523 0.0653296 0.0652980 NA 0.203674 42632
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51195550 rs148968329 C A -0.0221 0.0784 0.7776998 0.7780296 NA 0.0391374 44125
22 51196164 rs8136603 A T -0.0461 0.0875 0.5986004 0.5982928 NA 0.1427720 47696
22 51196296 rs9616961 G C -0.0275 0.0786 0.7266997 0.7264342 NA 0.0395367 44125
22 51197576 rs147713773 G C -0.0268 0.0787 0.7329005 0.7334547 NA 0.0471246 44125
22 51197602 rs187225588 T A -0.0716 0.0873 0.4119002 0.4121247 NA 0.0175719 48415
22 51198569 rs142671391 G C -0.0808 0.0940 0.3901998 0.3900237 NA 0.1110220 47696
22 51198906 rs6010079 G A -0.0206 0.0792 0.7948001 0.7947859 NA 0.0421326 44125
22 51202748 rs9616963 A G -0.0225 0.0789 0.7760005 0.7755131 NA 0.0391374 44125
22 51208568 rs148425445 G T -0.0835 0.0868 0.3356997 0.3360589 NA 0.1160140 48415
22 51222100 rs114553188 G T -0.0732 0.0922 0.4273001 0.4272384 NA 0.0880591 47696

bcf preview

1   797440  rs58013264  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0061:0.0523:0.0421055:58335:rs58013264
1   798400  rs10900604  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0111:0.0428:0.0989233:59725:rs10900604
1   798959  rs11240777  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0029:0.0419:0.0243385:61885:rs11240777
1   801467  rs61768212  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0124:0.0525:0.0895357:57957:rs61768212
1   804759  rs7526310   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0177:0.0526:0.13265:57957:rs7526310
1   808631  rs11240779  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0199:0.0417:0.198665:58725:rs11240779
1   808928  rs1247187939    C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.02:0.0417:0.199558:58725:rs1247187939
1   833927  rs28593608  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0954:0.0523:1.16673:42632:rs28593608
1   834198  rs28385272  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0979:0.0523:1.2136:42632:rs28385272
1   834928  rs4422949   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0964:0.0523:1.18489:42632:rs4422949
1   834999  rs28570054  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0958:0.0523:1.17613:42632:rs28570054
1   836896  rs28705752  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.1181:0.048:1.86044:42632:rs28705752
1   836924  rs72890788  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.1018:0.0521:1.29286:42632:rs72890788
1   838387  rs4970384   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0995:0.052:1.25477:42632:rs4970384
1   838555  rs4970383   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0924:0.0495:1.2088:42632:rs4970383
1   839103  rs28562941  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.1137:0.048:1.75007:42632:rs28562941
1   842013  rs1191510089    T   G   .   PASS    .   ES:SE:LP:SS:ID  0.1128:0.0524:1.50307:42632:rs1191510089
1   845635  rs117086422 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0491:0.0423:0.608007:66564:rs117086422
1   845938  rs57760052  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0462:0.0419:0.56928:66564:rs57760052
1   846078  rs778265812 C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0322:0.0433:0.340084:66564:rs778265812
1   846398  rs58781670  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0503:0.0425:0.626353:66564:rs58781670
1   846465  rs60454217  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.177:0.13:0.76045:61888:rs60454217
1   846543  rs79396034  G   T   .   PASS    .   ES:SE:LP:SS:ID  0.1519:0.14:0.556268:55259:rs79396034
1   846808  rs4475691   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0355:0.0431:0.387428:66564:rs4475691
1   846864  rs1269142199    G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0277:0.0433:0.282579:66275:rs1269142199
1   847228  rs3905286   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0372:0.0426:0.416915:66564:rs3905286
1   847491  rs1158719307    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0439:0.042:0.529149:66564:rs1158719307
1   848090  rs4246505   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0444:0.0421:0.535212:66564:rs4246505
1   848445  rs1156895099    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0469:0.0422:0.575282:66564:rs1156895099
1   848456  rs11507767  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0468:0.0422:0.573977:66564:rs11507767
1   848738  rs3829741   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0449:0.0421:0.542118:66564:rs3829741
1   850062  rs28723578  A   T   .   PASS    .   ES:SE:LP:SS:ID  0.0458:0.042:0.560194:66275:rs28723578
1   850123  rs28622257  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0435:0.0421:0.521145:66564:rs28622257
1   851190  rs28609852  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0471:0.0419:0.582362:66564:rs28609852
1   851204  rs28552953  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0463:0.0416:0.575118:66275:rs28552953
1   852664  rs28605311  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0463:0.0425:0.558776:66564:rs28605311
1   852758  rs4970462   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.046:0.043:0.545765:65556:rs4970462
1   853239  rs4970380   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0418:0.0425:0.488518:66564:rs4970380
1   853805  rs3748591   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0757:0.1161:0.288446:61888:rs3748591
1   854250  rs7537756   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0432:0.0423:0.511731:66564:rs7537756
1   854429  rs72902552  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0805:0.1161:0.311313:61888:rs72902552
1   856476  rs4040605   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0206:0.0372:0.237022:58725:rs4040605
1   857177  rs386627408 T   C   .   PASS    .   ES:SE:LP:SS:ID  0.07:0.1157:0.263285:61888:rs386627408
1   858040  rs4970460   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0619:0.0426:0.83535:64115:rs4970460
1   858051  rs4970459   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0658:0.0426:0.913996:64115:rs4970459
1   858801  rs7418179   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0696:0.0417:1.02269:63396:rs7418179
1   859913  rs1187056171    A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.1231:0.1251:0.487716:61888:rs1187056171
1   860416  rs61464428  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0778:0.0413:1.22709:64115:rs61464428
1   860461  rs57465118  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0879:0.1125:0.36191:61888:rs57465118
1   860521  rs57924093  C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.091:0.1125:0.378305:61888:rs57924093