Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-18,TotalVariants=6304358,VariantsNotRead=0,HarmonisedVariants=6304358,VariantsNotHarmonised=0,SwitchedAlleles=4284164,NormalisedVariants=0,TotalControls=68374,TotalCases=47429,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-vcf/inputs/562856133/upload.txt.gz --id ieu-b-18 --json /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-vcf/inputs/562856133/ieu-b-18_data.json --ref /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-18/ieu-b-18.vcf.gz --rm_chr_prefix --cohort_cases 47429 --cohort_controls 68374; 1.2.1",
    "file_date": "2020-07-02T11:23:57.988013",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/igd/ieu-b-18/ieu-b-18.vcf.gz; Date=Wed Feb 24 16:47:04 2021"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-ldsc/inputs/562856133/ieu-b-18.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-18/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Thu Jul  2 11:31:39 2020
Reading summary statistics from /data/cromwell-executions/qc/efdf2918-41f7-4e74-ac72-1943734e8393/call-ldsc/inputs/562856133/ieu-b-18.vcf.gz ...
Read summary statistics for 6304141 SNPs.
Dropped 28044 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1208721 SNPs remain.
After merging with regression SNP LD, 1208721 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.1001 (0.0086)
Lambda GC: 1.1459
Mean Chi^2: 1.2449
Intercept: 1.0228 (0.0089)
Ratio: 0.093 (0.0363)
Analysis finished at Thu Jul  2 11:33:21 2020
Total time elapsed: 1.0m:42.64s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.1541,
    "mean_EFFECT": -0.0007,
    "n": "-Inf",
    "n_snps": 6304358,
    "n_clumped_hits": 72,
    "n_p_sig": 22711,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 6304358,
    "n_miss_AF_reference": 133998,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NA",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1208721,
    "ldsc_nsnp_merge_regression_ld": 1208721,
    "ldsc_observed_scale_h2_beta": 0.1001,
    "ldsc_observed_scale_h2_se": 0.0086,
    "ldsc_intercept_beta": 1.0228,
    "ldsc_intercept_se": 0.0089,
    "ldsc_lambda_gc": 1.1459,
    "ldsc_mean_chisq": 1.2449,
    "ldsc_ratio": 0.0931
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 190 0.9999699 3 58 0 6298247 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 6304358 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
logical N 6304358 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.665710e+00 5.763473e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.845000e+07 5.644676e+07 828.0000000 3.184148e+07 6.887496e+07 1.143450e+08 2.492223e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -6.620000e-04 6.378320e-02 -4.1783800 -1.734960e-02 4.001000e-04 1.816400e-02 4.906280e+00 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 3.318160e-02 4.144470e-02 0.0107826 1.772500e-02 2.170220e-02 3.229540e-02 1.569400e+00 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.755653e-01 2.957547e-01 0.0000000 2.146001e-01 4.687001e-01 7.319999e-01 9.999000e-01 ▇▇▆▆▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.755653e-01 2.957547e-01 0.0000000 2.146008e-01 4.686991e-01 7.319995e-01 9.999000e-01 ▇▇▆▆▆
numeric AF_reference 133998 0.9787452 NA NA NA NA NA NA NA 3.205810e-01 2.522943e-01 0.0000000 1.130190e-01 2.490020e-01 4.862220e-01 1.000000e+00 ▇▅▃▂▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 51803 rs62637812 T C -0.0182658 0.0722086 0.8003000 0.8003001 NA NA NA
1 54676 rs2462492 C T -0.0150121 0.0586260 0.7979001 0.7979002 NA NA NA
1 62271 rs28599927 A G -0.0117690 0.0514308 0.8190000 0.8189997 NA NA NA
1 66162 rs201684885 A T -0.0177567 0.0754741 0.8140000 0.8140001 NA NA NA
1 74681 rs13328683 G T 0.0116678 0.0506186 0.8177000 0.8177000 NA NA NA
1 91536 rs6702460 G T -0.0025031 0.0864472 0.9769000 0.9769000 NA 0.420727 NA
1 91581 rs151118460 G A -0.0015011 0.0843424 0.9858000 0.9858000 NA 0.423722 NA
1 234481 rs8179403 T A 0.0019980 0.0817444 0.9805000 0.9805000 NA NA NA
1 662622 rs61769339 G A 0.0046890 0.0422833 0.9117001 0.9116999 NA 0.147564 NA
1 729679 rs4951859 C G -0.0074720 0.0438186 0.8645999 0.8646001 NA 0.639976 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51190878 rs143051537 G A 0.0090588 0.0390819 0.8167001 0.8167002 NA 0.4626600 NA
22 51191334 rs541575022 C G -0.1213320 0.0841412 0.1493001 0.1493011 NA 0.1042330 NA
22 51192518 rs5771005 C G 0.0070749 0.0431962 0.8698999 0.8699000 NA 0.2398160 NA
22 51192586 rs5771006 G A 0.0325640 0.0413431 0.4308995 0.4308999 NA 0.0848642 NA
22 51194639 rs6009964 T C 0.0089597 0.0438781 0.8382001 0.8382002 NA 0.2418130 NA
22 51194679 rs6009965 T C -0.0112632 0.0437421 0.7968000 0.7967997 NA 0.4758390 NA
22 51196164 rs8136603 A T -0.1219520 0.0858594 0.1554999 0.1555004 NA 0.1427720 NA
22 51197266 rs61290853 A G -0.0214279 0.0448745 0.6330004 0.6330009 NA 0.4229230 NA
22 51198232 rs3859893 C G 0.0170538 0.0444454 0.7012001 0.7011991 NA 0.2623800 NA
22 51199281 rs4040021 T C -0.0070246 0.0427896 0.8695999 0.8696001 NA 0.4612620 NA

bcf preview

1   51803   rs62637812  T   C   .   PASS    .   ES:SE:LP:ID -0.0182658:0.0722086:0.0967472:rs62637812
1   54676   rs2462492   C   T   .   PASS    .   ES:SE:LP:ID -0.0150121:0.058626:0.0980515:rs2462492
1   62271   rs28599927  A   G   .   PASS    .   ES:SE:LP:ID -0.011769:0.0514308:0.0867161:rs28599927
1   66162   rs201684885 A   T   .   PASS    .   ES:SE:LP:ID -0.0177567:0.0754741:0.0893756:rs201684885
1   74681   rs13328683  G   T   .   PASS    .   ES:SE:LP:ID 0.0116678:0.0506186:0.087406:rs13328683
1   91536   rs1251109649    G   T   .   PASS    .   ES:SE:LP:ID -0.00250313:0.0864472:0.0101499:rs1251109649
1   91581   rs1524604   G   A   .   PASS    .   ES:SE:LP:ID -0.00150113:0.0843424:0.00621119:rs1524604
1   234481  rs8179403   T   A   .   PASS    .   ES:SE:LP:ID 0.001998:0.0817444:0.0085524:rs8179403
1   662622  rs61769339  G   A   .   PASS    .   ES:SE:LP:ID 0.00468899:0.0422833:0.040148:rs61769339
1   729679  rs4951859   C   G   .   PASS    .   ES:SE:LP:ID -0.00747201:0.0438186:0.0631848:rs4951859
1   736523  rs71490526  T   C   .   PASS    .   ES:SE:LP:ID -0.00608147:0.0496431:0.0445528:rs71490526
1   750055  rs11240771  T   C   .   PASS    .   ES:SE:LP:ID 0.0988264:0.2019:0.204468:rs11240771
1   750138  rs61770171  G   A   .   PASS    .   ES:SE:LP:ID 0.0174469:0.0367861:0.197021:rs61770171
1   752566  rs3094315   G   A   .   PASS    .   ES:SE:LP:ID -0.0192142:0.0364006:0.223589:rs3094315
1   752721  rs3131972   A   G   .   PASS    .   ES:SE:LP:ID -0.0196065:0.0365637:0.227825:rs3131972
1   752894  rs3131971   T   C   .   PASS    .   ES:SE:LP:ID -0.0292675:0.0379433:0.356054:rs3131971
1   753474  rs2073814   C   G   .   PASS    .   ES:SE:LP:ID -0.0242047:0.0364108:0.295678:rs2073814
1   753541  rs1388595942    G   A   .   PASS    .   ES:SE:LP:ID 0.0179381:0.0366154:0.204676:rs1388595942
1   754182  rs3131969   A   G   .   PASS    .   ES:SE:LP:ID -0.0180364:0.0365102:0.206699:rs3131969
1   754192  rs3131968   A   G   .   PASS    .   ES:SE:LP:ID -0.0181346:0.036646:0.207118:rs3131968
1   754334  rs3131967   T   C   .   PASS    .   ES:SE:LP:ID -0.0255703:0.0370162:0.31007:rs3131967
1   754503  rs3115859   G   A   .   PASS    .   ES:SE:LP:ID -0.0247902:0.0364135:0.304518:rs3115859
1   754964  rs3131966   C   T   .   PASS    .   ES:SE:LP:ID -0.0278097:0.0372977:0.34113:rs3131966
1   755775  rs3131965   A   G   .   PASS    .   ES:SE:LP:ID -0.0199987:0.0373959:0.227092:rs3131965
1   755890  rs1280367067    A   T   .   PASS    .   ES:SE:LP:ID -0.0224462:0.0361187:0.272215:rs1280367067
1   756380  rs3131963   T   A   .   PASS    .   ES:SE:LP:ID -0.0160702:0.0442045:0.144966:rs3131963
1   756434  rs61768170  G   C   .   PASS    .   ES:SE:LP:ID 0.0223484:0.0362002:0.270026:rs61768170
1   756479  rs61768171  C   A   .   PASS    .   ES:SE:LP:ID 0.0179381:0.0369133:0.202732:rs61768171
1   756604  rs3131962   A   G   .   PASS    .   ES:SE:LP:ID -0.0200967:0.0365958:0.234406:rs3131962
1   756912  rs6699990   A   G   .   PASS    .   ES:SE:LP:ID -0.254797:0.306241:0.392116:rs6699990
1   757640  rs3115853   G   A   .   PASS    .   ES:SE:LP:ID -0.0234235:0.0362958:0.285084:rs3115853
1   757734  rs1557551770    C   T   .   PASS    .   ES:SE:LP:ID -0.0232281:0.0361572:0.283496:rs1557551770
1   757936  rs1360886751    C   A   .   PASS    .   ES:SE:LP:ID -0.0233258:0.0362658:0.283913:rs1360886751
1   758144  rs3131956   A   G   .   PASS    .   ES:SE:LP:ID -0.0116321:0.0347329:0.13212:rs3131956
1   758626  rs3131954   C   T   .   PASS    .   ES:SE:LP:ID -0.010841:0.0343783:0.123493:rs3131954
1   760912  rs1048488   C   T   .   PASS    .   ES:SE:LP:ID -0.0164637:0.0356593:0.190912:rs1048488
1   761147  rs3115850   T   C   .   PASS    .   ES:SE:LP:ID -0.0160702:0.0354697:0.186753:rs3115850
1   761752  rs1057213   C   T   .   PASS    .   ES:SE:LP:ID -0.0113355:0.0342676:0.130299:rs1057213
1   762273  rs3115849   G   A   .   PASS    .   ES:SE:LP:ID -0.0116321:0.0345279:0.133004:rs3115849
1   764191  rs7515915   T   G   .   PASS    .   ES:SE:LP:ID 0.0117309:0.0341218:0.136083:rs7515915
1   766007  rs61768174  A   C   .   PASS    .   ES:SE:LP:ID 0.0113355:0.0344052:0.129713:rs61768174
1   768253  rs2977608   A   C   .   PASS    .   ES:SE:LP:ID 0.0455205:0.0343495:0.732594:rs2977608
1   768448  rs12562034  G   A   .   PASS    .   ES:SE:LP:ID -0.0442083:0.0313504:0.799971:rs12562034
1   769223  rs60320384  C   G   .   PASS    .   ES:SE:LP:ID 0.0118298:0.0340796:0.13757:rs60320384
1   769963  rs7518545   G   A   .   PASS    .   ES:SE:LP:ID -0.0457379:0.0326299:0.793174:rs7518545
1   771823  rs2977605   T   C   .   PASS    .   ES:SE:LP:ID -0.0115332:0.0347818:0.130651:rs2977605
1   771967  rs59066358  G   A   .   PASS    .   ES:SE:LP:ID 0.0114344:0.0346635:0.129889:rs59066358
1   772755  rs2905039   A   C   .   PASS    .   ES:SE:LP:ID -0.0115332:0.0347125:0.130944:rs2905039
1   774837  rs1470678699    T   A   .   PASS    .   ES:SE:LP:ID 0.0148886:0.0381843:0.157017:rs1470678699
1   774874  rs1327209068    A   C   .   PASS    .   ES:SE:LP:ID -0.0168571:0.0397617:0.172889:rs1327209068