Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-16,TotalVariants=4988035,VariantsNotRead=0,HarmonisedVariants=4988035,VariantsNotHarmonised=0,SwitchedAlleles=1212274,NormalisedVariants=0,TotalControls=29677,TotalCases=228,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-vcf/inputs/562856131/upload.txt.gz --id ieu-b-16 --json /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-vcf/inputs/562856131/ieu-b-16_data.json --ref /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-16/ieu-b-16.vcf.gz --rm_chr_prefix --cohort_cases 228 --cohort_controls 29677; 1.2.1",
    "file_date": "2020-06-26T15:37:18.944023",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/igd/ieu-b-16/ieu-b-16.vcf.gz; Date=Wed Feb 24 16:30:25 2021"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-ldsc/inputs/562856131/ieu-b-16.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-16/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Fri Jun 26 15:43:26 2020
Reading summary statistics from /data/cromwell-executions/qc/453395e0-6f38-4be6-aae2-4db382f30cef/call-ldsc/inputs/562856131/ieu-b-16.vcf.gz ...
Read summary statistics for 4988022 SNPs.
Dropped 11911 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ...
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 951632 SNPs remain.
After merging with regression SNP LD, 951632 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0604 (0.017)
Lambda GC: 1.0741
Mean Chi^2: 1.0638
Intercept: 1.0244 (0.009)
Ratio: 0.3828 (0.1406)
Analysis finished at Fri Jun 26 15:44:19 2020
Total time elapsed: 52.15s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9303,
    "inflation_factor": 1.0475,
    "mean_EFFECT": -0,
    "n": "-Inf",
    "n_snps": 4988035,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 29960,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NA",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 951632,
    "ldsc_nsnp_merge_regression_ld": 951632,
    "ldsc_observed_scale_h2_beta": 0.0604,
    "ldsc_observed_scale_h2_se": 0.017,
    "ldsc_intercept_beta": 1.0244,
    "ldsc_intercept_se": 0.009,
    "ldsc_lambda_gc": 1.0741,
    "ldsc_mean_chisq": 1.0638,
    "ldsc_ratio": 0.3824
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 1 0.9999998 3 35 0 4988031 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 4988035 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.645840e+00 5.873062e+00 1.00000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.300000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.978591e+07 5.501378e+07 3.30120e+04 3.475994e+07 7.128113e+07 1.143919e+08 2.492190e+08 ▇▇▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -2.410000e-05 1.545800e-03 -1.40138e-02 -8.746000e-04 -3.410000e-05 8.064000e-04 1.888890e-02 ▁▃▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.370800e-03 6.541000e-04 7.01500e-04 9.186000e-04 1.106100e-03 1.565900e-03 4.458100e-03 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.909730e-01 2.907902e-01 1.00000e-07 2.399999e-01 4.899999e-01 7.400005e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.909728e-01 2.907656e-01 2.00000e-07 2.363494e-01 4.866900e-01 7.431217e-01 9.999998e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.075557e-01 2.582576e-01 1.00004e-02 8.994690e-02 2.269840e-01 4.776830e-01 9.900000e-01 ▇▃▂▂▁
numeric AF_reference 29960 0.9939936 NA NA NA NA NA NA NA 3.087950e-01 2.468717e-01 1.99700e-04 1.046330e-01 2.384190e-01 4.696490e-01 1.000000e+00 ▇▅▃▂▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 1029805 rs6689308 A G -0.0008992 0.0011739 0.4400003 0.4437209 0.1636420 0.3156950 NA
1 1030565 rs6687776 C T -0.0003071 0.0011761 0.7899998 0.7939803 0.1635740 0.3067090 NA
1 1030633 rs6678318 G A -0.0003060 0.0011761 0.7899998 0.7947158 0.1635810 0.3065100 NA
1 1031973 rs9651270 C T -0.0007131 0.0011916 0.5500004 0.5495671 0.1602210 0.3107030 NA
1 1033596 rs6604964 T C -0.0007057 0.0011926 0.5500004 0.5540327 0.1600850 0.3117010 NA
1 1033670 rs6604966 T C -0.0007021 0.0011930 0.5600000 0.5561980 0.1600370 0.3158950 NA
1 1033680 rs6604967 T A -0.0007014 0.0011930 0.5600000 0.5565672 0.1600240 0.3117010 NA
1 1033994 rs6698368 C T -0.0007033 0.0011927 0.5600000 0.5553980 0.1600870 0.3115020 NA
1 1034200 rs77977351 T C -0.0007013 0.0011928 0.5600000 0.5565489 0.1600930 0.3115020 NA
1 1036601 rs72910156 C T 0.0026229 0.0028572 0.3599996 0.3586275 0.0236873 0.0399361 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
23 139314056 rs5955415 C G 0.0006665 0.0012189 0.5800000 0.5845020 0.096722 0.125033 NA
23 139314798 rs62609008 C A 0.0006675 0.0012241 0.5900000 0.5855313 0.095806 0.106755 NA
23 139315107 rs62609010 T A 0.0006635 0.0012234 0.5900000 0.5875828 0.095896 0.107020 NA
23 139316769 rs73230748 T C 0.0006603 0.0012211 0.5900000 0.5886683 0.096294 0.121060 NA
23 139317055 rs62609011 C A 0.0005371 0.0012210 0.6600001 0.6600145 0.096320 0.116026 NA
23 139317165 rs28877369 C G 0.0006692 0.0012213 0.5800000 0.5837269 0.096261 0.116291 NA
23 139317337 rs55757628 A G 0.0006660 0.0012230 0.5900000 0.5860814 0.095968 0.107285 NA
23 139319949 rs140616281 A G 0.0005309 0.0012241 0.6600001 0.6645072 0.095872 0.116291 NA
23 139320136 rs76621315 C G 0.0006621 0.0012203 0.5900000 0.5874056 0.096460 0.114437 NA
23 139325995 rs62609013 G A 0.0006700 0.0012216 0.5800000 0.5834018 0.096270 0.101987 NA

bcf preview

1   1029805 rs891281851 A   G   .   PASS    AF=0.163642 ES:SE:LP:AF:ID  -0.00089915:0.00117394:0.356547:0.163642:rs891281851
1   1030565 rs6687776   C   T   .   PASS    AF=0.163574 ES:SE:LP:AF:ID  -0.000307141:0.00117613:0.102373:0.163574:rs6687776
1   1030633 rs6678318   G   A   .   PASS    AF=0.163581 ES:SE:LP:AF:ID  -0.000306022:0.00117614:0.102373:0.163581:rs6678318
1   1031973 rs9651270   C   T   .   PASS    AF=0.160221 ES:SE:LP:AF:ID  -0.000713094:0.00119165:0.259637:0.160221:rs9651270
1   1033596 rs6604964   T   C   .   PASS    AF=0.160085 ES:SE:LP:AF:ID  -0.000705683:0.00119258:0.259637:0.160085:rs6604964
1   1033670 rs1370950991    T   C   .   PASS    AF=0.160037 ES:SE:LP:AF:ID  -0.00070209:0.00119302:0.251812:0.160037:rs1370950991
1   1033680 rs1370950991    T   A   .   PASS    AF=0.160024 ES:SE:LP:AF:ID  -0.000701422:0.001193:0.251812:0.160024:rs1370950991
1   1033994 rs6698368   C   T   .   PASS    AF=0.160087 ES:SE:LP:AF:ID  -0.000703336:0.00119272:0.251812:0.160087:rs6698368
1   1034200 rs77977351  T   C   .   PASS    AF=0.160093 ES:SE:LP:AF:ID  -0.000701331:0.00119279:0.251812:0.160093:rs77977351
1   1036601 rs72910156  C   T   .   PASS    AF=0.0236873    ES:SE:LP:AF:ID  0.00262289:0.00285723:0.443698:0.0236873:rs72910156
1   1036860 rs11579922  A   C   .   PASS    AF=0.126829 ES:SE:LP:AF:ID  -0.000634943:0.00130622:0.200659:0.126829:rs11579922
1   1036959 rs1162868282    T   C   .   PASS    AF=0.112898 ES:SE:LP:AF:ID  -0.00191261:0.00136224:0.79588:0.112898:rs1162868282
1   1037303 rs11260592  T   C   .   PASS    AF=0.140083 ES:SE:LP:AF:ID  -0.000467394:0.00123858:0.148742:0.140083:rs11260592
1   1037313 rs11260593  A   G   .   PASS    AF=0.140165 ES:SE:LP:AF:ID  -0.000471873:0.00123861:0.154902:0.140165:rs11260593
1   1037367 rs11260594  G   A   .   PASS    AF=0.140082 ES:SE:LP:AF:ID  -0.000470189:0.00123873:0.154902:0.140082:rs11260594
1   1038088 rs66622470  G   C   .   PASS    AF=0.140153 ES:SE:LP:AF:ID  -0.000471628:0.00123796:0.154902:0.140153:rs66622470
1   1039098 rs11260595  C   A   .   PASS    AF=0.0240233    ES:SE:LP:AF:ID  0.0026:0.00283265:0.443698:0.0240233:rs11260595
1   1039268 rs9329410   T   C   .   PASS    AF=0.140321 ES:SE:LP:AF:ID  -0.000474292:0.00123675:0.154902:0.140321:rs9329410
1   1039817 rs1205065516    A   G   .   PASS    AF=0.140221 ES:SE:LP:AF:ID  -0.000472465:0.00123747:0.154902:0.140221:rs1205065516
1   1040026 rs6671356   T   C   .   PASS    AF=0.140613 ES:SE:LP:AF:ID  -0.000498036:0.00123497:0.161151:0.140613:rs6671356
1   1040472 rs6664124   C   T   .   PASS    AF=0.140514 ES:SE:LP:AF:ID  -0.00049625:0.00123569:0.161151:0.140514:rs6664124
1   1040794 rs6687681   G   A   .   PASS    AF=0.14049  ES:SE:LP:AF:ID  -0.000495237:0.0012358:0.161151:0.14049:rs6687681
1   1040824 rs6656379   T   C   .   PASS    AF=0.140637 ES:SE:LP:AF:ID  -0.000505593:0.00123521:0.167491:0.140637:rs6656379
1   1040985 rs6697379   C   G   .   PASS    AF=0.140464 ES:SE:LP:AF:ID  -0.000494974:0.00123584:0.161151:0.140464:rs6697379
1   1041700 rs6604968   A   G   .   PASS    AF=0.140606 ES:SE:LP:AF:ID  -0.000504978:0.00123541:0.167491:0.140606:rs6604968
1   1041786 rs6604969   T   C   .   PASS    AF=0.140618 ES:SE:LP:AF:ID  -0.000504964:0.00123528:0.167491:0.140618:rs6604969
1   1042483 rs12733365  C   T   .   PASS    AF=0.140487 ES:SE:LP:AF:ID  -0.000492477:0.00123567:0.161151:0.140487:rs12733365
1   1042527 rs1486993720    G   C   .   PASS    AF=0.112699 ES:SE:LP:AF:ID  -0.00186336:0.00136268:0.769551:0.112699:rs1486993720
1   1042673 rs897825316 C   T   .   PASS    AF=0.141593 ES:SE:LP:AF:ID  -0.000545297:0.00123926:0.180456:0.141593:rs897825316
1   1042927 rs4970354   G   T   .   PASS    AF=0.140473 ES:SE:LP:AF:ID  -0.000491823:0.00123557:0.161151:0.140473:rs4970354
1   1043053 rs4970355   A   G   .   PASS    AF=0.140399 ES:SE:LP:AF:ID  -0.00048697:0.00123585:0.161151:0.140399:rs4970355
1   1045473 rs11586034  G   A   .   PASS    AF=0.111905 ES:SE:LP:AF:ID  -0.0017909:0.0013677:0.721246:0.111905:rs11586034
1   1046073 rs11590188  C   A   .   PASS    AF=0.138803 ES:SE:LP:AF:ID  -0.000783606:0.00124343:0.275724:0.138803:rs11590188
1   1046164 rs386627439 C   T   .   PASS    AF=0.140449 ES:SE:LP:AF:ID  -0.000488534:0.00123569:0.161151:0.140449:rs386627439
1   1046717 rs34820586  G   C   .   PASS    AF=0.112762 ES:SE:LP:AF:ID  -0.00186346:0.00136235:0.769551:0.112762:rs34820586
1   1046861 rs12723165  G   A   .   PASS    AF=0.112753 ES:SE:LP:AF:ID  -0.00186275:0.00136233:0.769551:0.112753:rs12723165
1   1047374 rs12743678  T   A   .   PASS    AF=0.140066 ES:SE:LP:AF:ID  -0.000461178:0.0012371:0.148742:0.140066:rs12743678
1   1048501 rs7518814   G   A   .   PASS    AF=0.138809 ES:SE:LP:AF:ID  -0.00078344:0.00124344:0.275724:0.138809:rs7518814
1   1048955 rs4970405   A   G   .   PASS    AF=0.104547 ES:SE:LP:AF:ID  -0.00198494:0.00140812:0.79588:0.104547:rs4970405
1   1048989 rs4970406   A   G   .   PASS    AF=0.113456 ES:SE:LP:AF:ID  -0.00217616:0.00136046:0.958607:0.113456:rs4970406
1   1049083 rs4970407   C   A   .   PASS    AF=0.112673 ES:SE:LP:AF:ID  -0.00200319:0.00136328:0.853872:0.112673:rs4970407
1   1049950 rs12726255  A   G   .   PASS    AF=0.138796 ES:SE:LP:AF:ID  -0.00164697:0.0012459:0.721246:0.138796:rs12726255
1   1052946 rs12755848  G   T   .   PASS    AF=0.111675 ES:SE:LP:AF:ID  -0.00195003:0.00137198:0.79588:0.111675:rs12755848
1   1053452 rs4970409   G   A   .   PASS    AF=0.111677 ES:SE:LP:AF:ID  -0.00194947:0.00137187:0.79588:0.111677:rs4970409
1   1053670 rs4970410   G   A   .   PASS    AF=0.137678 ES:SE:LP:AF:ID  -0.00154575:0.00125251:0.657577:0.137678:rs4970410
1   1053724 rs4970411   A   G   .   PASS    AF=0.13729  ES:SE:LP:AF:ID  -0.00152789:0.00125448:0.657577:0.13729:rs4970411
1   1054552 rs12567697  G   A   .   PASS    AF=0.110694 ES:SE:LP:AF:ID  -0.00187676:0.00137803:0.769551:0.110694:rs12567697
1   1054893 rs4970412   T   C   .   PASS    AF=0.13749  ES:SE:LP:AF:ID  -0.00152344:0.00125333:0.657577:0.13749:rs4970412
1   1055653 rs34808604  C   G   .   PASS    AF=0.110838 ES:SE:LP:AF:ID  -0.00188808:0.00137689:0.769551:0.110838:rs34808604
1   1055797 rs76744376  A   G   .   PASS    AF=0.111311 ES:SE:LP:AF:ID  -0.00203643:0.00137504:0.853872:0.111311:rs76744376