Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-117,TotalVariants=2454220,VariantsNotRead=0,HarmonisedVariants=2454220,VariantsNotHarmonised=0,SwitchedAlleles=0,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-vcf/inputs/268670777/upload.txt.gz --id ieu-b-117 --json /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-vcf/inputs/268670777/ieu-b-117_data.json --ref /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-117/ieu-b-117.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2021-04-01T16:32:30.772457",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-report/inputs/268670777/ieu-b-117.vcf.gz; Date=Thu Apr  1 16:44:44 2021"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-ldsc/inputs/268670777/ieu-b-117.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-117/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Thu Apr  1 16:40:53 2021
Reading summary statistics from /data/cromwell-executions/qc/ea7a0483-9645-4985-a934-6a070033aa5d/call-ldsc/inputs/268670777/ieu-b-117.vcf.gz ...
Read summary statistics for 2454220 SNPs.
Dropped 837 SNPs with duplicated rs numbers.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 1095455 SNPs remain.
After merging with regression SNP LD, 1095455 SNPs remain.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.0893 (0.0122)
Lambda GC: 1.0536
Mean Chi^2: 1.0526
Intercept: 0.9892 (0.0065)
Ratio < 0 (usually indicates GC correction).
Analysis finished at Thu Apr  1 16:41:45 2021
Total time elapsed: 52.14s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.047,
    "mean_EFFECT": -0,
    "n": 36466,
    "n_snps": 2454220,
    "n_clumped_hits": 4,
    "n_p_sig": 119,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 2454220,
    "n_miss_AF_reference": 20662,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 1095455,
    "ldsc_nsnp_merge_regression_ld": 1095455,
    "ldsc_observed_scale_h2_beta": 0.0893,
    "ldsc_observed_scale_h2_se": 0.0122,
    "ldsc_intercept_beta": 0.9892,
    "ldsc_intercept_se": 0.0065,
    "ldsc_lambda_gc": 1.0536,
    "ldsc_mean_chisq": 1.0526,
    "ldsc_ratio": -0.2053
}
 

Flags

name value
af_correlation NA
inflation_factor FALSE
n FALSE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq FALSE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.000000 3 42 0 2454215 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 2454220 0.000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.000000 NA NA NA NA NA NA NA 8.591643e+00 5.660377e+00 1.0000 4.000000e+00 8.000000e+00 1.200000e+01 2.30000e+01 ▇▅▅▂▂
numeric POS 0 1.000000 NA NA NA NA NA NA NA 7.882306e+07 5.568305e+07 12994.0000 3.263689e+07 7.022880e+07 1.143378e+08 2.49219e+08 ▇▆▅▂▁
numeric EFFECT 0 1.000000 NA NA NA NA NA NA NA -1.410000e-05 6.572400e-03 -0.1300 -3.200000e-03 0.000000e+00 3.200000e-03 1.50000e-01 ▁▁▇▁▁
numeric SE 0 1.000000 NA NA NA NA NA NA NA 5.444300e-03 3.587900e-03 0.0032 3.500000e-03 4.100000e-03 5.800000e-03 6.60000e-02 ▇▁▁▁▁
numeric PVAL 0 1.000000 NA NA NA NA NA NA NA 4.932832e-01 2.906034e-01 0.0000 2.399999e-01 4.901003e-01 7.456002e-01 1.00000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.000000 NA NA NA NA NA NA NA 4.933392e-01 2.906485e-01 0.0000 2.394069e-01 4.897405e-01 7.456925e-01 1.00000e+00 ▇▇▇▇▇
numeric AF_reference 20662 0.991581 NA NA NA NA NA NA NA 3.616939e-01 2.555958e-01 0.0000 1.467650e-01 2.997200e-01 5.459270e-01 1.00000e+00 ▇▆▃▃▂
numeric N 0 1.000000 NA NA NA NA NA NA NA 3.646600e+04 0.000000e+00 36466.0000 3.646600e+04 3.646600e+04 3.646600e+04 3.64660e+04 ▁▁▇▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 721290 rs12565286 G C 0.0340 0.0180 0.0577006 0.0589067 NA 0.0371406 36466
1 723819 rs11804171 T A 0.0320 0.0180 0.0632397 0.0754404 NA 0.1345850 36466
1 723891 rs2977670 G C -0.0380 0.0200 0.0569194 0.0574331 NA 0.7799520 36466
1 752566 rs3094315 G A -0.0078 0.0073 0.2844998 0.2852981 NA 0.7182510 36466
1 754192 rs3131968 A G -0.0017 0.0100 0.8723001 0.8650101 NA 0.6785140 36466
1 775659 rs2905035 A G -0.0029 0.0076 0.6984993 0.7027737 NA 0.7450080 36466
1 776546 rs12124819 A G 0.0039 0.0060 0.5132004 0.5156922 NA 0.0756789 36466
1 777122 rs2980319 A T -0.0027 0.0076 0.7238007 0.7223925 NA 0.7472040 36466
1 779322 rs4040617 A G 0.0024 0.0077 0.7534996 0.7552774 NA 0.2264380 36466
1 780785 rs2977612 T A -0.0030 0.0076 0.6961006 0.6930371 NA 0.6693290 36466
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51216564 rs9616970 T C 0.0089 0.0074 0.2290003 0.2290914 NA 0.1563500 36466
22 51217134 rs117417021 A G 0.0032 0.0068 0.6418004 0.6379348 NA 0.2671730 36466
22 51222100 rs114553188 G T 0.0200 0.0087 0.0240099 0.0215134 NA 0.0880591 36466
22 51223637 rs375798137 G A 0.0200 0.0087 0.0201298 0.0215134 NA 0.0788738 36466
22 51229805 rs9616985 T C 0.0052 0.0130 0.7016992 0.6891565 NA 0.0730831 36466
23 35921591 rs2204667 C G 0.0021 0.0045 0.6353997 0.6407384 NA NA 36466
23 51666786 rs14115 A G -0.0062 0.0073 0.3925003 0.3957060 NA NA 36466
23 70163799 rs1626496 A C -0.0023 0.0069 0.7393005 0.7388827 NA NA 36466
23 91415872 rs6562597 G A -0.0110 0.0150 0.4543003 0.4633551 NA 0.0021192 36466
23 118495837 rs12882977 G A 0.0000 0.0033 0.9991000 1.0000000 NA 0.2307280 36466

bcf preview

1   721290  rs12565286  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.034:0.018:1.23882:36466:rs12565286
1   723819  rs11804171  T   A   .   PASS    .   ES:SE:LP:SS:ID  0.032:0.018:1.19901:36466:rs11804171
1   723891  rs2977670   G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.038:0.02:1.24474:36466:rs2977670
1   752566  rs3094315   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0078:0.0073:0.545918:36466:rs3094315
1   754192  rs3131968   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0017:0.01:0.0593341:36466:rs3131968
1   775659  rs2905035   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0029:0.0076:0.155834:36466:rs2905035
1   776546  rs12124819  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0039:0.006:0.289713:36466:rs12124819
1   777122  rs2980319   A   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0027:0.0076:0.140381:36466:rs2980319
1   779322  rs4040617   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0024:0.0077:0.122917:36466:rs4040617
1   780785  rs2977612   T   A   .   PASS    .   ES:SE:LP:SS:ID  -0.003:0.0076:0.157328:36466:rs2977612
1   785050  rs2905062   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0042:0.0076:0.234257:36466:rs2905062
1   785989  rs2980300   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0075:0.0073:0.518271:36466:rs2980300
1   990380  rs3121561   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0037:0.0058:0.282746:36466:rs3121561
1   998501  rs3813193   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0031:0.0053:0.248028:36466:rs3813193
1   1003629 rs4075116   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0043:0.0043:0.496073:36466:rs4075116
1   1005806 rs3934834   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0034:0.0051:0.294821:36466:rs3934834
1   1017170 rs3766193   C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0063:0.0043:0.859178:36466:rs3766193
1   1017197 rs3766192   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0054:0.004:0.748362:36466:rs3766192
1   1017587 rs3766191   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0041:0.0054:0.347754:36466:rs3766191
1   1018562 rs9442371   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0047:0.0039:0.627088:36466:rs9442371
1   1018704 rs9442372   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0045:0.0039:0.605023:36466:rs9442372
1   1021346 rs10907177  A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0033:0.0054:0.269783:36466:rs10907177
1   1021415 rs386627436 A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0047:0.004:0.628378:36466:rs386627436
1   1021583 rs10907178  A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0035:0.0054:0.287266:36466:rs10907178
1   1021695 rs9442398   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0035:0.0042:0.396314:36466:rs9442398
1   1022037 rs6701114   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0031:0.0043:0.330497:36466:rs6701114
1   1026707 rs4074137   C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.006:0.0047:0.688246:36466:rs4074137
1   1030565 rs6687776   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.01:0.0051:1.36281:36466:rs6687776
1   1031540 rs776599533 A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0096:0.0047:1.37469:36466:rs776599533
1   1036959 rs1162868282    T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.007:0.594654:36466:rs1162868282
1   1040026 rs6671356   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0097:0.006:0.968996:36466:rs6671356
1   1046164 rs386627439 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0098:0.0059:1.00877:36466:rs386627439
1   1048955 rs4970405   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0057:0.0064:0.432856:36466:rs4970405
1   1049950 rs12726255  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0082:0.0057:0.813892:36466:rs12726255
1   1053452 rs4970409   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0076:0.007:0.558148:36466:rs4970409
1   1060235 rs7540009   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.016:0.011:0.7734:36466:rs7540009
1   1060608 rs17160824  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0079:0.0071:0.575282:36466:rs17160824
1   1061115 rs17160826  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.0071:0.58486:36466:rs17160826
1   1061152 rs12748370  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.0071:0.578396:36466:rs12748370
1   1061166 rs11807848  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0022:0.0047:0.190777:36466:rs11807848
1   1062015 rs1557446446    C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.016:0.012:0.773916:36466:rs1557446446
1   1062638 rs9442373   C   A   .   PASS    .   ES:SE:LP:SS:ID  0.0017:0.0047:0.147642:36466:rs9442373
1   1064535 rs6682475   G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0046:0.0061:0.352421:36466:rs6682475
1   1064979 rs2298217   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.008:0.0057:0.799697:36466:rs2298217
1   1066403 rs10907182  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0064:0.0049:0.729088:36466:rs10907182
1   1071118 rs10907183  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0058:0.0051:0.59363:36466:rs10907183
1   1077064 rs4970357   C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0032:0.0068:0.193616:36466:rs4970357
1   1080925 rs911335568 G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.007:0.0084:0.392009:36466:rs911335568
1   1087683 rs9442380   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0008:0.0066:0.0469172:36466:rs9442380
1   1089262 rs4970358   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0036:0.0089:0.163549:36466:rs4970358