Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

QQ plot

qq_plot

AF plot

af_plot

P-Z plot

pz_plot

beta_std plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "FORMAT": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.1": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.2": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.3": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.4": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "FORMAT.5": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.6": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.7": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.8": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "META": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.1": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "META.2": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.3": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.4": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.5": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.6": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.7": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "SAMPLE": "<ID=ieu-b-116,TotalVariants=64421,VariantsNotRead=0,HarmonisedVariants=64421,VariantsNotHarmonised=0,SwitchedAlleles=0,NormalisedVariants=0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621,assembly=HG19/GRCh37>",
    "contig.1": "<ID=2,length=243199373,assembly=HG19/GRCh37>",
    "contig.2": "<ID=3,length=198022430,assembly=HG19/GRCh37>",
    "contig.3": "<ID=4,length=191154276,assembly=HG19/GRCh37>",
    "contig.4": "<ID=5,length=180915260,assembly=HG19/GRCh37>",
    "contig.5": "<ID=6,length=171115067,assembly=HG19/GRCh37>",
    "contig.6": "<ID=7,length=159138663,assembly=HG19/GRCh37>",
    "contig.7": "<ID=8,length=146364022,assembly=HG19/GRCh37>",
    "contig.8": "<ID=9,length=141213431,assembly=HG19/GRCh37>",
    "contig.9": "<ID=10,length=135534747,assembly=HG19/GRCh37>",
    "contig.10": "<ID=11,length=135006516,assembly=HG19/GRCh37>",
    "contig.11": "<ID=12,length=133851895,assembly=HG19/GRCh37>",
    "contig.12": "<ID=13,length=115169878,assembly=HG19/GRCh37>",
    "contig.13": "<ID=14,length=107349540,assembly=HG19/GRCh37>",
    "contig.14": "<ID=15,length=102531392,assembly=HG19/GRCh37>",
    "contig.15": "<ID=16,length=90354753,assembly=HG19/GRCh37>",
    "contig.16": "<ID=17,length=81195210,assembly=HG19/GRCh37>",
    "contig.17": "<ID=18,length=78077248,assembly=HG19/GRCh37>",
    "contig.18": "<ID=19,length=59128983,assembly=HG19/GRCh37>",
    "contig.19": "<ID=20,length=63025520,assembly=HG19/GRCh37>",
    "contig.20": "<ID=21,length=48129895,assembly=HG19/GRCh37>",
    "contig.21": "<ID=22,length=51304566,assembly=HG19/GRCh37>",
    "contig.22": "<ID=X,length=155270560,assembly=HG19/GRCh37>",
    "contig.23": "<ID=Y,length=59373566,assembly=HG19/GRCh37>",
    "contig.24": "<ID=MT,length=16569,assembly=HG19/GRCh37>",
    "contig.25": "<ID=GL000207.1,length=4262,assembly=HG19/GRCh37>",
    "contig.26": "<ID=GL000226.1,length=15008,assembly=HG19/GRCh37>",
    "contig.27": "<ID=GL000229.1,length=19913,assembly=HG19/GRCh37>",
    "contig.28": "<ID=GL000231.1,length=27386,assembly=HG19/GRCh37>",
    "contig.29": "<ID=GL000210.1,length=27682,assembly=HG19/GRCh37>",
    "contig.30": "<ID=GL000239.1,length=33824,assembly=HG19/GRCh37>",
    "contig.31": "<ID=GL000235.1,length=34474,assembly=HG19/GRCh37>",
    "contig.32": "<ID=GL000201.1,length=36148,assembly=HG19/GRCh37>",
    "contig.33": "<ID=GL000247.1,length=36422,assembly=HG19/GRCh37>",
    "contig.34": "<ID=GL000245.1,length=36651,assembly=HG19/GRCh37>",
    "contig.35": "<ID=GL000197.1,length=37175,assembly=HG19/GRCh37>",
    "contig.36": "<ID=GL000203.1,length=37498,assembly=HG19/GRCh37>",
    "contig.37": "<ID=GL000246.1,length=38154,assembly=HG19/GRCh37>",
    "contig.38": "<ID=GL000249.1,length=38502,assembly=HG19/GRCh37>",
    "contig.39": "<ID=GL000196.1,length=38914,assembly=HG19/GRCh37>",
    "contig.40": "<ID=GL000248.1,length=39786,assembly=HG19/GRCh37>",
    "contig.41": "<ID=GL000244.1,length=39929,assembly=HG19/GRCh37>",
    "contig.42": "<ID=GL000238.1,length=39939,assembly=HG19/GRCh37>",
    "contig.43": "<ID=GL000202.1,length=40103,assembly=HG19/GRCh37>",
    "contig.44": "<ID=GL000234.1,length=40531,assembly=HG19/GRCh37>",
    "contig.45": "<ID=GL000232.1,length=40652,assembly=HG19/GRCh37>",
    "contig.46": "<ID=GL000206.1,length=41001,assembly=HG19/GRCh37>",
    "contig.47": "<ID=GL000240.1,length=41933,assembly=HG19/GRCh37>",
    "contig.48": "<ID=GL000236.1,length=41934,assembly=HG19/GRCh37>",
    "contig.49": "<ID=GL000241.1,length=42152,assembly=HG19/GRCh37>",
    "contig.50": "<ID=GL000243.1,length=43341,assembly=HG19/GRCh37>",
    "contig.51": "<ID=GL000242.1,length=43523,assembly=HG19/GRCh37>",
    "contig.52": "<ID=GL000230.1,length=43691,assembly=HG19/GRCh37>",
    "contig.53": "<ID=GL000237.1,length=45867,assembly=HG19/GRCh37>",
    "contig.54": "<ID=GL000233.1,length=45941,assembly=HG19/GRCh37>",
    "contig.55": "<ID=GL000204.1,length=81310,assembly=HG19/GRCh37>",
    "contig.56": "<ID=GL000198.1,length=90085,assembly=HG19/GRCh37>",
    "contig.57": "<ID=GL000208.1,length=92689,assembly=HG19/GRCh37>",
    "contig.58": "<ID=GL000191.1,length=106433,assembly=HG19/GRCh37>",
    "contig.59": "<ID=GL000227.1,length=128374,assembly=HG19/GRCh37>",
    "contig.60": "<ID=GL000228.1,length=129120,assembly=HG19/GRCh37>",
    "contig.61": "<ID=GL000214.1,length=137718,assembly=HG19/GRCh37>",
    "contig.62": "<ID=GL000221.1,length=155397,assembly=HG19/GRCh37>",
    "contig.63": "<ID=GL000209.1,length=159169,assembly=HG19/GRCh37>",
    "contig.64": "<ID=GL000218.1,length=161147,assembly=HG19/GRCh37>",
    "contig.65": "<ID=GL000220.1,length=161802,assembly=HG19/GRCh37>",
    "contig.66": "<ID=GL000213.1,length=164239,assembly=HG19/GRCh37>",
    "contig.67": "<ID=GL000211.1,length=166566,assembly=HG19/GRCh37>",
    "contig.68": "<ID=GL000199.1,length=169874,assembly=HG19/GRCh37>",
    "contig.69": "<ID=GL000217.1,length=172149,assembly=HG19/GRCh37>",
    "contig.70": "<ID=GL000216.1,length=172294,assembly=HG19/GRCh37>",
    "contig.71": "<ID=GL000215.1,length=172545,assembly=HG19/GRCh37>",
    "contig.72": "<ID=GL000205.1,length=174588,assembly=HG19/GRCh37>",
    "contig.73": "<ID=GL000219.1,length=179198,assembly=HG19/GRCh37>",
    "contig.74": "<ID=GL000224.1,length=179693,assembly=HG19/GRCh37>",
    "contig.75": "<ID=GL000223.1,length=180455,assembly=HG19/GRCh37>",
    "contig.76": "<ID=GL000195.1,length=182896,assembly=HG19/GRCh37>",
    "contig.77": "<ID=GL000212.1,length=186858,assembly=HG19/GRCh37>",
    "contig.78": "<ID=GL000222.1,length=186861,assembly=HG19/GRCh37>",
    "contig.79": "<ID=GL000200.1,length=187035,assembly=HG19/GRCh37>",
    "contig.80": "<ID=GL000193.1,length=189789,assembly=HG19/GRCh37>",
    "contig.81": "<ID=GL000194.1,length=191469,assembly=HG19/GRCh37>",
    "contig.82": "<ID=GL000225.1,length=211173,assembly=HG19/GRCh37>",
    "contig.83": "<ID=GL000192.1,length=547496,assembly=HG19/GRCh37>",
    "Gwas2VCF_command": "--data /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-vcf/inputs/268670776/upload.txt.gz --id ieu-b-116 --json /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-vcf/inputs/268670776/ieu-b-116_data.json --ref /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-vcf/inputs/1899004205/human_g1k_v37.fasta --dbsnp /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-vcf/inputs/-307190728/dbsnp.v153.b37.vcf.gz --out /data/igd/ieu-b-116/ieu-b-116.vcf.gz --alias alias.txt; 1.3.0",
    "file_date": "2021-04-01T15:28:09.476818",
    "bcftools_viewVersion": "1.9+htslib-1.9",
    "bcftools_viewCommand": "view -h /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-report/inputs/268670776/ieu-b-116.vcf.gz; Date=Thu Apr  1 15:29:58 2021"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-ldsc/inputs/268670776/ieu-b-116.vcf.gz \
--ref-ld-chr /data/ref/eur_w_ld_chr/ \
--out /data/igd/ieu-b-116/ldsc.txt \
--w-ld-chr /data/ref/eur_w_ld_chr/ 

Beginning analysis at Thu Apr  1 15:28:48 2021
Reading summary statistics from /data/cromwell-executions/qc/d9d317f8-4d99-4e8e-87ff-a7c078fa2c1e/call-ldsc/inputs/268670776/ieu-b-116.vcf.gz ...
Read summary statistics for 64421 SNPs.
Reading reference panel LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read reference panel LD Scores for 1290028 SNPs.
Removing partitioned LD Scores with zero variance.
Reading regression weight LD Score from /data/ref/eur_w_ld_chr/[1-22] ... (ldscore_fromlist)
Read regression weight LD Scores for 1290028 SNPs.
After merging with reference panel LD, 41416 SNPs remain.
After merging with regression SNP LD, 41416 SNPs remain.
WARNING: number of SNPs less than 200k; this is almost always bad.
Using two-step estimator with cutoff at 30.
Total Observed scale h2: 0.207 (0.0292)
Lambda GC: 1.2855
Mean Chi^2: 1.4905
Intercept: 1.0836 (0.0295)
Ratio: 0.1704 (0.0601)
Analysis finished at Thu Apr  1 15:28:55 2021
Total time elapsed: 7.46s

QC metrics

Metrics

Metrics

{
    "af_correlation": "NA",
    "inflation_factor": 1.2901,
    "mean_EFFECT": -0,
    "n": 108557,
    "n_snps": 64421,
    "n_clumped_hits": 14,
    "n_p_sig": 73,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 64421,
    "n_miss_AF_reference": 515,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": 41416,
    "ldsc_nsnp_merge_regression_ld": 41416,
    "ldsc_observed_scale_h2_beta": 0.207,
    "ldsc_observed_scale_h2_se": 0.0292,
    "ldsc_intercept_beta": 1.0836,
    "ldsc_intercept_se": 0.0295,
    "ldsc_lambda_gc": 1.2855,
    "ldsc_mean_chisq": 1.4905,
    "ldsc_ratio": 0.1704
}
 

Flags

name value
af_correlation NA
inflation_factor TRUE
n FALSE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio FALSE
ldsc_intercept_beta FALSE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 5 33 0 64421 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical AF 64421 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.820012e+00 5.794708e+00 1.00000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▃▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.722352e+07 5.590941e+07 1.30340e+04 3.159054e+07 6.644051e+07 1.137371e+08 2.491546e+08 ▇▆▃▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -2.860000e-05 5.002400e-03 -1.30000e-01 -2.300000e-03 -2.200000e-05 2.300000e-03 1.500000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 3.576300e-03 2.741800e-03 2.00000e-03 2.200000e-03 2.700000e-03 3.800000e-03 5.500000e-02 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.570792e-01 3.016161e-01 0.00000e+00 1.829641e-01 4.436107e-01 7.184888e-01 9.999780e-01 ▇▆▆▅▅
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.570669e-01 3.016654e-01 0.00000e+00 1.824224e-01 4.444467e-01 7.188471e-01 1.000000e+00 ▇▆▆▆▅
numeric AF_reference 515 0.9920057 NA NA NA NA NA NA NA 3.393791e-01 2.596465e-01 1.99700e-04 1.236020e-01 2.690695e-01 5.185700e-01 9.996010e-01 ▇▅▃▂▂
numeric N 0 1.0000000 NA NA NA NA NA NA NA 1.085570e+05 0.000000e+00 1.08557e+05 1.085570e+05 1.085570e+05 1.085570e+05 1.085570e+05 ▁▁▇▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 785050 rs2905062 G A -0.00150 0.0043 0.7320690 0.7272115 NA 0.626997 108557
1 1140435 rs1815606 G T 0.00085 0.0025 0.7303987 0.7338565 NA 0.712061 108557
1 1706136 rs6603811 T C -0.00450 0.0049 0.3600427 0.3584266 NA 0.746605 108557
1 1706160 rs7531583 A G -0.00860 0.0025 0.0004520 0.0005817 NA 0.583267 108557
1 1708801 rs12044597 A G -0.00510 0.0021 0.0133869 0.0151584 NA 0.360224 108557
1 1723031 rs9660180 G A -0.00570 0.0022 0.0092210 0.0095723 NA 0.358027 108557
1 1812688 rs6603803 A G -0.00520 0.0020 0.0109590 0.0093224 NA 0.360623 108557
1 1886519 rs2748975 C A -0.01300 0.0042 0.0030250 0.0019665 NA 0.607428 108557
1 1892325 rs2803291 T C -0.00380 0.0030 0.2064310 0.2052745 NA 0.835863 108557
1 2035379 rs10910029 A G -0.00098 0.0022 0.6505849 0.6559913 NA 0.531550 108557
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 50878927 rs12171249 G A 0.00110 0.0024 0.6354963 0.6467130 NA 0.2062700 108557
22 50960682 rs140524 C T -0.00300 0.0029 0.3046162 0.3009105 NA 0.2302320 108557
22 50971266 rs140522 T C 0.00300 0.0023 0.1823509 0.1921150 NA 0.6190100 108557
22 51015674 rs3213446 C T 0.00140 0.0045 0.7609007 0.7557162 NA 0.1859030 108557
22 51018911 rs2269382 C T -0.00037 0.0047 0.9376991 0.9372526 NA 0.1222040 108557
22 51057923 rs131718 C T 0.00150 0.0021 0.4641539 0.4750505 NA 0.5517170 108557
22 51062832 rs8142033 G A 0.00300 0.0041 0.4535164 0.4643472 NA 0.1773160 108557
22 51163138 rs715586 C T 0.00550 0.0032 0.0884158 0.0856599 NA 0.0902556 108557
22 51165664 rs8137951 G A 0.00300 0.0023 0.1876031 0.1921150 NA 0.4063500 108557
22 51178090 rs2285395 G A 0.00560 0.0046 0.2267003 0.2234554 NA 0.0666933 108557

bcf preview

1   785050  rs2905062   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0015:0.0043:0.135448:108557:rs2905062
1   1140435 rs1815606   G   T   .   PASS    .   ES:SE:LP:SS:ID  0.00085:0.0025:0.13644:108557:rs1815606
1   1706136 rs6603811   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0045:0.0049:0.443646:108557:rs6603811
1   1706160 rs7531583   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0086:0.0025:3.34486:108557:rs7531583
1   1708801 rs12044597  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0051:0.0021:1.87332:108557:rs12044597
1   1723031 rs9660180   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0057:0.0022:2.03522:108557:rs9660180
1   1812688 rs6603803   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0052:0.002:1.96023:108557:rs6603803
1   1886519 rs1558021383    C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.013:0.0042:2.51927:108557:rs1558021383
1   1892325 rs2803291   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0038:0.003:0.685225:108557:rs2803291
1   2035379 rs10910029  A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.00098:0.0022:0.186696:108557:rs10910029
1   2069172 rs425277    C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0016:0.0022:0.312303:108557:rs425277
1   2119833 rs2460002   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.006:0.0023:2.10896:108557:rs2460002
1   2142518 rs380190    A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0014:0.0025:0.244121:108557:rs380190
1   2180524 rs260513    G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0012:0.0021:0.251529:108557:rs260513
1   2182342 rs10797416  T   C   .   PASS    .   ES:SE:LP:SS:ID  0.0012:0.0021:0.244211:108557:rs10797416
1   2184855 rs12385717  G   C   .   PASS    .   ES:SE:LP:SS:ID  0.0051:0.0045:0.595515:108557:rs12385717
1   2204755 rs7553178   G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0035:0.0023:0.915024:108557:rs7553178
1   2224645 rs796896153 A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0016:0.003:0.221728:108557:rs796896153
1   2231595 rs1809822   A   C   .   PASS    .   ES:SE:LP:SS:ID  0.0054:0.0055:0.485378:108557:rs1809822
1   2251357 rs12080256  C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.00069:0.0028:0.0932395:108557:rs12080256
1   2280661 rs2055204   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.00092:0.002:0.18697:108557:rs2055204
1   2291680 rs2840542   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.00076:0.0026:0.113934:108557:rs2840542
1   2390331 rs10910077  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0015:0.0025:0.257863:108557:rs10910077
1   2409383 rs12742193  G   A   .   PASS    .   ES:SE:LP:SS:ID  0.0017:0.0037:0.185448:108557:rs12742193
1   2420913 rs6668720   A   G   .   PASS    .   ES:SE:LP:SS:ID  -0.00076:0.0023:0.128576:108557:rs6668720
1   2490898 rs1553129604    C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0027:0.0021:0.680798:108557:rs1553129604
1   2490942 rs2281852   C   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0017:0.0021:0.402705:108557:rs2281852
1   2541727 rs11589185  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0023:0.0053:0.179172:108557:rs11589185
1   2723345 rs4648360   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.00031:0.002:0.0566371:108557:rs4648360
1   2725952 rs1192117797    C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0035:0.0029:0.646353:108557:rs1192117797
1   2727804 rs10909880  C   T   .   PASS    .   ES:SE:LP:SS:ID  0.00091:0.0022:0.167939:108557:rs10909880
1   2829551 rs1869970   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0035:0.0025:0.80112:108557:rs1869970
1   2839757 rs1557731784    A   C   .   PASS    .   ES:SE:LP:SS:ID  -0.00038:0.0023:0.0614578:108557:rs1557731784
1   2842270 rs2045331   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.00019:0.0023:0.0304182:108557:rs2045331
1   2890345 rs4648445   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.00077:0.0024:0.124172:108557:rs4648445
1   2904056 rs10797373  G   A   .   PASS    .   ES:SE:LP:SS:ID  1.5e-05:0.0025:0.00207043:108557:rs10797373
1   2976816 rs1138513   T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0017:0.004:0.175287:108557:rs1138513
1   2996196 rs7525173   C   G   .   PASS    .   ES:SE:LP:SS:ID  -0.0044:0.0022:1.31873:108557:rs7525173
1   3037613 rs941540736 C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.00094:0.0022:0.173713:108557:rs941540736
1   3074306 rs2651902   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0023:0.0028:0.381129:108557:rs2651902
1   3089849 rs17390062  T   C   .   PASS    .   ES:SE:LP:SS:ID  -0.0026:0.0036:0.326223:108557:rs17390062
1   3103826 rs4233024   C   T   .   PASS    .   ES:SE:LP:SS:ID  0.0034:0.0034:0.506025:108557:rs4233024
1   3105276 rs2817138   T   G   .   PASS    .   ES:SE:LP:SS:ID  0.003:0.0032:0.451769:108557:rs2817138
1   3110735 rs2651912   T   C   .   PASS    .   ES:SE:LP:SS:ID  0.002:0.0032:0.27974:108557:rs2651912
1   3117678 rs12095716  G   C   .   PASS    .   ES:SE:LP:SS:ID  -0.003:0.0031:0.475656:108557:rs12095716
1   3138136 rs2817148   A   G   .   PASS    .   ES:SE:LP:SS:ID  0.0044:0.0072:0.26607:108557:rs2817148
1   3144068 rs10158583  G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0022:0.0047:0.194915:108557:rs10158583
1   3144745 rs1553288   C   T   .   PASS    .   ES:SE:LP:SS:ID  -0.0018:0.0048:0.147508:108557:rs1553288
1   3197747 rs10492940  C   A   .   PASS    .   ES:SE:LP:SS:ID  0.002:0.0031:0.282351:108557:rs10492940
1   3209631 rs4648376   G   A   .   PASS    .   ES:SE:LP:SS:ID  -0.0025:0.0021:0.647848:108557:rs4648376