Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST007236,TotalVariants=13742658,VariantsNotRead=0,HarmonisedVariants=13578410,VariantsNotHarmonised=164248,SwitchedAlleles=66116,TotalControls=42892.0,TotalCases=46785.0,StudyType=CaseControl>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-27T07:27:46.687834",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236_data.vcf.gz; Date=Sun Oct 27 07:49:06 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST007236/ebi-a-GCST007236.vcf.gz; Date=Sun May 10 11:02:21 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sun Oct 27 08:13:57 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sun Oct 27 08:15:27 2019
Total time elapsed: 1.0m:30.7s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9583,
    "inflation_factor": "NA",
    "mean_EFFECT": 0.6682,
    "n": "-Inf",
    "n_snps": 13578410,
    "n_clumped_hits": 431,
    "n_p_sig": 2240,
    "n_mono": 0,
    "n_ns": 5449249,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 747941,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor TRUE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 TRUE
mean_EFFECT_01 TRUE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 59 0 13496359 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 45 0 24263 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 42 0 16804 0 NA NA NA NA NA NA NA NA NA NA
logical N 13496471 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.723791e+00 5.850441e+00 1.0000e+00 4.000000e+00 8.000000e+00 1.300000e+01 2.300000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.885235e+07 5.624015e+07 1.1570e+03 3.252689e+07 6.955872e+07 1.145990e+08 2.492298e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 6.681628e-01 2.206493e-01 -1.0000e+00 4.715870e-01 6.549480e-01 8.784310e-01 1.000000e+00 ▁▁▁▆▇
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 5.832580e-02 5.861980e-02 9.4629e-03 1.403350e-02 2.992350e-02 8.802230e-02 3.111010e-01 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 1.182961e+00 2.374825e+00 0.0000e+00 1.152009e-01 5.146240e-01 1.505411e+00 6.018385e+02 ▇▁▁▁▁
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 5.484000e-03 2.360430e-02 0.0000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.070978e-01 ▇▁▁▁▁
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 1.752081e-01 2.491779e-01 7.0080e-04 5.786100e-03 4.364760e-02 2.572320e-01 9.992080e-01 ▇▂▁▁▁
numeric AF_reference 747941 0.9445825 NA NA NA NA NA NA NA 1.794197e-01 2.438676e-01 0.0000e+00 4.592600e-03 6.010380e-02 2.683710e-01 1.000000e+00 ▇▂▁▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 55850 rs191890754 C G 0.374380 0.1097290 0.5886417 0.0006452 0.0050374 NA NA
1 61743 rs184286948 G C 0.349813 0.2081040 1.1988499 0.0927721 0.0014630 0.0045926 NA
1 88188 rs148331237 C A 0.305173 0.0950864 1.7024682 0.0013300 0.0081978 0.0033946 NA
1 99719 rs183898652 C T 0.324218 0.1830260 3.4726179 0.0764890 0.0021039 0.0089856 NA
1 534540 rs183186584 G T 0.386841 0.1384060 1.2998014 0.0051904 0.0030403 0.0011981 NA
1 669228 rs187185296 G A 0.473190 0.1424030 2.2877523 0.0008909 0.0023126 0.0001997 NA
1 701131 rs185335630 A C 0.316222 0.1541090 0.7863774 0.0401758 0.0029933 0.0041933 NA
1 712583 rs142048655 T C 0.585035 0.1295310 0.3296477 0.0000063 0.0023907 0.0001997 NA
1 713337 rs184249808 G A 0.376975 0.1632120 1.5173194 0.0209033 0.0024171 0.0071885 NA
1 715211 rs184426933 C G 0.499511 0.1215050 0.0072905 0.0000394 0.0031305 NA NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
23 154902741 rs187527392 G C 0.380585 0.0157308 0.0233212 0.0000000 0.5777660 NA NA
23 154902743 rs192049455 G C 0.387574 0.0156039 0.0548479 0.0000000 0.5812960 NA NA
23 154903802 rs138894319 G A 0.733597 0.0206104 0.0351471 0.0000000 0.0802178 0.0185430 NA
23 154910802 rs147364233 C T 0.679735 0.0297552 0.1665559 0.0000000 0.0396267 0.1070200 NA
23 154914662 rs181330040 C T 0.869178 0.1189390 0.4559561 0.0000000 0.0017892 NA NA
23 154915730 rs143362946 C T 0.893196 0.0326066 0.0016448 0.0000000 0.0247238 0.0307285 NA
23 154916845 rs669237 G T 0.885280 0.0118508 0.0020713 0.0000000 0.2457750 0.4166890 NA
23 154918383 rs641588 G T 0.886534 0.0118817 0.0043470 0.0000000 0.2424240 0.3565560 NA
23 154926315 rs145589925 A C 0.302740 0.1069070 0.0310077 0.0046286 0.0066350 0.0037086 NA
23 154929412 rs557132 C T 0.881486 0.0119407 0.0057314 0.0000000 0.2407430 0.3568210 NA

bcf preview

1   55850   rs191890754 C   G   .   PASS    AF=0.00503738   ES:SE:LP:AF:ID  0.37438:0.109729:0.230149:0.00503738:rs191890754
1   61743   rs184286948 G   C   .   PASS    AF=0.00146299   ES:SE:LP:AF:ID  0.349813:0.208104:-0.0787648:0.00146299:rs184286948
1   88188   rs148331237 C   A   .   PASS    AF=0.00819782   ES:SE:LP:AF:ID  0.305173:0.0950864:-0.231079:0.00819782:rs148331237
1   99719   rs183898652 C   T   .   PASS    AF=0.0021039    ES:SE:LP:AF:ID  0.324218:0.183026:-0.540657:0.0021039:rs183898652
1   534540  rs183186584 G   T   .   PASS    AF=0.00304029   ES:SE:LP:AF:ID  0.386841:0.138406:-0.113877:0.00304029:rs183186584
1   669228  rs187185296 G   A   .   PASS    AF=0.0023126    ES:SE:LP:AF:ID  0.47319:0.142403:-0.359409:0.0023126:rs187185296
1   701131  rs185335630 A   C   .   PASS    AF=0.00299333   ES:SE:LP:AF:ID  0.316222:0.154109:0.104369:0.00299333:rs185335630
1   712583  rs142048655 T   C   .   PASS    AF=0.0023907    ES:SE:LP:AF:ID  0.585035:0.129531:0.48195:0.0023907:rs142048655
1   713337  rs184249808 G   A   .   PASS    AF=0.0024171    ES:SE:LP:AF:ID  0.376975:0.163212:-0.181077:0.0024171:rs184249808
1   715211  rs184426933 C   G   .   PASS    AF=0.00313049   ES:SE:LP:AF:ID  0.499511:0.121505:2.13724:0.00313049:rs184426933
1   720468  rs187315357 G   A   .   PASS    AF=0.00377569   ES:SE:LP:AF:ID  0.363827:0.12849:-0.302424:0.00377569:rs187315357
1   723379  rs181223789 T   A   .   PASS    AF=0.00241745   ES:SE:LP:AF:ID  0.582859:0.129005:0.511315:0.00241745:rs181223789
1   736689  rs181876450 T   C   .   PASS    AF=0.00645792   ES:SE:LP:AF:ID  0.303149:0.108689:0.134345:0.00645792:rs181876450
1   745642  rs200097270 AC  A   .   PASS    AF=0.0141252    ES:SE:LP:AF:ID  0.305535:0.0738519:0.418791:0.0141252:rs200097270
1   748332  rs182373484 T   C   .   PASS    AF=0.00411936   ES:SE:LP:AF:ID  0.353748:0.126618:0.169099:0.00411936:rs182373484
1   748524  rs144265613 C   T   .   PASS    AF=0.0030819    ES:SE:LP:AF:ID  0.354413:0.142328:-0.419984:0.0030819:rs144265613
1   755435  rs184270342 T   G   .   PASS    AF=0.00143177   ES:SE:LP:AF:ID  0.581506:0.180259:-0.764179:0.00143177:rs184270342
1   767811  rs140378911 G   C   .   PASS    AF=0.0229196    ES:SE:LP:AF:ID  0.301416:0.0583518:0.922283:0.0229196:rs140378911
1   770281  rs188583355 T   A   .   PASS    AF=0.00215254   ES:SE:LP:AF:ID  0.419804:0.160753:0.328452:0.00215254:rs188583355
1   772172  rs141427868 C   G   .   PASS    AF=0.00137714   ES:SE:LP:AF:ID  0.315806:0.232257:0.114382:0.00137714:rs141427868
1   775426  rs2905037   G   A   .   PASS    AF=0.998058 ES:SE:LP:AF:ID  0.35343:0.185015:1.21957:0.998058:rs2905037
1   783632  rs193023236 G   A   .   PASS    AF=0.0030342    ES:SE:LP:AF:ID  0.326872:0.15418:0.00821502:0.0030342:rs193023236
1   789256  rs3131939   T   C   .   PASS    AF=0.989984 ES:SE:LP:AF:ID  0.323458:0.0847601:0.734216:0.989984:rs3131939
1   791932  rs149451138 C   T   .   PASS    AF=0.0035666    ES:SE:LP:AF:ID  0.304673:0.146634:-0.013166:0.0035666:rs149451138
1   793470  rs184843908 G   A   .   PASS    AF=0.0103438    ES:SE:LP:AF:ID  0.302945:0.0860253:1.30623:0.0103438:rs184843908
1   794319  rs186495636 G   A   .   PASS    AF=0.00144783   ES:SE:LP:AF:ID  0.349671:0.214841:0.367142:0.00144783:rs186495636
1   794368  rs191334345 G   A   .   PASS    AF=0.0018618    ES:SE:LP:AF:ID  0.528108:0.155663:0.12612:0.0018618:rs191334345
1   794787  rs183239437 A   G   .   PASS    AF=0.00199079   ES:SE:LP:AF:ID  0.370662:0.176137:1.47776:0.00199079:rs183239437
1   795131  rs187620961 G   A   .   PASS    AF=0.00216635   ES:SE:LP:AF:ID  0.423305:0.159573:0.329719:0.00216635:rs187620961
1   796298  rs143060708 C   G   .   PASS    AF=0.00302765   ES:SE:LP:AF:ID  0.380693:0.139629:1.02301:0.00302765:rs143060708
1   799346  rs184260340 C   A   .   PASS    AF=0.00265105   ES:SE:LP:AF:ID  0.304304:0.169821:1.01126:0.00265105:rs184260340
1   799389  rs187038627 G   A   .   PASS    AF=0.0091864    ES:SE:LP:AF:ID  0.319133:0.0888176:1.32913:0.0091864:rs187038627
1   801136  rs140609992 C   T   .   PASS    AF=0.00129571   ES:SE:LP:AF:ID  0.37602:0.218836:0.958256:0.00129571:rs140609992
1   801848  rs114911728 C   A   .   PASS    AF=0.00507533   ES:SE:LP:AF:ID  0.457065:0.0999171:1.47136:0.00507533:rs114911728
1   802671  rs191771620 T   G   .   PASS    AF=0.003486 ES:SE:LP:AF:ID  0.376492:0.132353:0.841553:0.003486:rs191771620
1   803192  rs190240504 C   T   .   PASS    AF=0.00267073   ES:SE:LP:AF:ID  0.468957:0.133352:-0.391803:0.00267073:rs190240504
1   809001  rs184951212 G   A   .   PASS    AF=0.00322111   ES:SE:LP:AF:ID  0.515872:0.117872:2.11274:0.00322111:rs184951212
1   810470  rs181485325 C   A   .   PASS    AF=0.00120633   ES:SE:LP:AF:ID  0.327783:0.238857:0.218073:0.00120633:rs181485325
1   810777  rs143204076 C   G   .   PASS    AF=0.0130197    ES:SE:LP:AF:ID  0.313919:0.0749837:-0.43058:0.0130197:rs143204076
1   812717  rs151199172 G   T   .   PASS    AF=0.00173359   ES:SE:LP:AF:ID  0.513626:0.160932:0.494497:0.00173359:rs151199172
1   819065  rs188466450 C   T   .   PASS    AF=0.0068528    ES:SE:LP:AF:ID  0.374311:0.0946198:0.500211:0.0068528:rs188466450
1   819467  rs187253977 T   A   .   PASS    AF=0.00151854   ES:SE:LP:AF:ID  0.306759:0.220291:1.12388:0.00151854:rs187253977
1   823790  rs143626389 G   A   .   PASS    AF=0.0209886    ES:SE:LP:AF:ID  0.311095:0.059865:2.44794:0.0209886:rs143626389
1   824357  rs80134645  C   T   .   PASS    AF=0.00289833   ES:SE:LP:AF:ID  0.652818:0.111692:2.67812:0.00289833:rs80134645
1   824666  rs140725574 C   A   .   PASS    AF=0.0047316    ES:SE:LP:AF:ID  0.401218:0.110035:1.97168:0.0047316:rs140725574
1   830791  rs184031231 C   T   .   PASS    AF=0.00704278   ES:SE:LP:AF:ID  0.316247:0.100482:-0.571112:0.00704278:rs184031231
1   834240  rs188158544 G   A   .   PASS    AF=0.00218954   ES:SE:LP:AF:ID  0.368178:0.173388:-0.42535:0.00218954:rs188158544
1   834830  rs116452738 G   A   .   PASS    AF=0.0121869    ES:SE:LP:AF:ID  0.392707:0.0709605:-0.437844:0.0121869:rs116452738
1   837096  rs144333274 C   T   .   PASS    AF=0.00684682   ES:SE:LP:AF:ID  0.322924:0.100812:-0.548135:0.00684682:rs144333274
1   837214  rs72631888  G   C   .   PASS    AF=0.0099436    ES:SE:LP:AF:ID  0.30113:0.088438:0.448115:0.0099436:rs72631888