{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST007236,TotalVariants=13742658,VariantsNotRead=0,HarmonisedVariants=13578410,VariantsNotHarmonised=164248,SwitchedAlleles=66116,TotalControls=42892.0,TotalCases=46785.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-27T07:27:46.687834",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236_data.vcf.gz; Date=Sun Oct 27 07:49:06 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST007236/ebi-a-GCST007236.vcf.gz; Date=Sun May 10 11:02:21 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sun Oct 27 08:13:57 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST007236/EBI-a-GCST007236.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sun Oct 27 08:15:27 2019
Total time elapsed: 1.0m:30.7s
{
"af_correlation": 0.9583,
"inflation_factor": "NA",
"mean_EFFECT": 0.6682,
"n": "-Inf",
"n_snps": 13578410,
"n_clumped_hits": 431,
"n_p_sig": 2240,
"n_mono": 0,
"n_ns": 5449249,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 747941,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | TRUE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | TRUE |
mean_EFFECT_01 | TRUE |
mean_chisq | TRUE |
n_p_sig | TRUE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 59 | 0 | 13496359 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 45 | 0 | 24263 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 42 | 0 | 16804 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 13496471 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.723791e+00 | 5.850441e+00 | 1.0000e+00 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.300000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.885235e+07 | 5.624015e+07 | 1.1570e+03 | 3.252689e+07 | 6.955872e+07 | 1.145990e+08 | 2.492298e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 6.681628e-01 | 2.206493e-01 | -1.0000e+00 | 4.715870e-01 | 6.549480e-01 | 8.784310e-01 | 1.000000e+00 | ▁▁▁▆▇ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.832580e-02 | 5.861980e-02 | 9.4629e-03 | 1.403350e-02 | 2.992350e-02 | 8.802230e-02 | 3.111010e-01 | ▇▂▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.182961e+00 | 2.374825e+00 | 0.0000e+00 | 1.152009e-01 | 5.146240e-01 | 1.505411e+00 | 6.018385e+02 | ▇▁▁▁▁ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.484000e-03 | 2.360430e-02 | 0.0000e+00 | 0.000000e+00 | 0.000000e+00 | 0.000000e+00 | 3.070978e-01 | ▇▁▁▁▁ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.752081e-01 | 2.491779e-01 | 7.0080e-04 | 5.786100e-03 | 4.364760e-02 | 2.572320e-01 | 9.992080e-01 | ▇▂▁▁▁ |
numeric | AF_reference | 747941 | 0.9445825 | NA | NA | NA | NA | NA | NA | NA | 1.794197e-01 | 2.438676e-01 | 0.0000e+00 | 4.592600e-03 | 6.010380e-02 | 2.683710e-01 | 1.000000e+00 | ▇▂▁▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 55850 | rs191890754 | C | G | 0.374380 | 0.1097290 | 0.5886417 | 0.0006452 | 0.0050374 | NA | NA |
1 | 61743 | rs184286948 | G | C | 0.349813 | 0.2081040 | 1.1988499 | 0.0927721 | 0.0014630 | 0.0045926 | NA |
1 | 88188 | rs148331237 | C | A | 0.305173 | 0.0950864 | 1.7024682 | 0.0013300 | 0.0081978 | 0.0033946 | NA |
1 | 99719 | rs183898652 | C | T | 0.324218 | 0.1830260 | 3.4726179 | 0.0764890 | 0.0021039 | 0.0089856 | NA |
1 | 534540 | rs183186584 | G | T | 0.386841 | 0.1384060 | 1.2998014 | 0.0051904 | 0.0030403 | 0.0011981 | NA |
1 | 669228 | rs187185296 | G | A | 0.473190 | 0.1424030 | 2.2877523 | 0.0008909 | 0.0023126 | 0.0001997 | NA |
1 | 701131 | rs185335630 | A | C | 0.316222 | 0.1541090 | 0.7863774 | 0.0401758 | 0.0029933 | 0.0041933 | NA |
1 | 712583 | rs142048655 | T | C | 0.585035 | 0.1295310 | 0.3296477 | 0.0000063 | 0.0023907 | 0.0001997 | NA |
1 | 713337 | rs184249808 | G | A | 0.376975 | 0.1632120 | 1.5173194 | 0.0209033 | 0.0024171 | 0.0071885 | NA |
1 | 715211 | rs184426933 | C | G | 0.499511 | 0.1215050 | 0.0072905 | 0.0000394 | 0.0031305 | NA | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
23 | 154902741 | rs187527392 | G | C | 0.380585 | 0.0157308 | 0.0233212 | 0.0000000 | 0.5777660 | NA | NA |
23 | 154902743 | rs192049455 | G | C | 0.387574 | 0.0156039 | 0.0548479 | 0.0000000 | 0.5812960 | NA | NA |
23 | 154903802 | rs138894319 | G | A | 0.733597 | 0.0206104 | 0.0351471 | 0.0000000 | 0.0802178 | 0.0185430 | NA |
23 | 154910802 | rs147364233 | C | T | 0.679735 | 0.0297552 | 0.1665559 | 0.0000000 | 0.0396267 | 0.1070200 | NA |
23 | 154914662 | rs181330040 | C | T | 0.869178 | 0.1189390 | 0.4559561 | 0.0000000 | 0.0017892 | NA | NA |
23 | 154915730 | rs143362946 | C | T | 0.893196 | 0.0326066 | 0.0016448 | 0.0000000 | 0.0247238 | 0.0307285 | NA |
23 | 154916845 | rs669237 | G | T | 0.885280 | 0.0118508 | 0.0020713 | 0.0000000 | 0.2457750 | 0.4166890 | NA |
23 | 154918383 | rs641588 | G | T | 0.886534 | 0.0118817 | 0.0043470 | 0.0000000 | 0.2424240 | 0.3565560 | NA |
23 | 154926315 | rs145589925 | A | C | 0.302740 | 0.1069070 | 0.0310077 | 0.0046286 | 0.0066350 | 0.0037086 | NA |
23 | 154929412 | rs557132 | C | T | 0.881486 | 0.0119407 | 0.0057314 | 0.0000000 | 0.2407430 | 0.3568210 | NA |
1 55850 rs191890754 C G . PASS AF=0.00503738 ES:SE:LP:AF:ID 0.37438:0.109729:0.230149:0.00503738:rs191890754
1 61743 rs184286948 G C . PASS AF=0.00146299 ES:SE:LP:AF:ID 0.349813:0.208104:-0.0787648:0.00146299:rs184286948
1 88188 rs148331237 C A . PASS AF=0.00819782 ES:SE:LP:AF:ID 0.305173:0.0950864:-0.231079:0.00819782:rs148331237
1 99719 rs183898652 C T . PASS AF=0.0021039 ES:SE:LP:AF:ID 0.324218:0.183026:-0.540657:0.0021039:rs183898652
1 534540 rs183186584 G T . PASS AF=0.00304029 ES:SE:LP:AF:ID 0.386841:0.138406:-0.113877:0.00304029:rs183186584
1 669228 rs187185296 G A . PASS AF=0.0023126 ES:SE:LP:AF:ID 0.47319:0.142403:-0.359409:0.0023126:rs187185296
1 701131 rs185335630 A C . PASS AF=0.00299333 ES:SE:LP:AF:ID 0.316222:0.154109:0.104369:0.00299333:rs185335630
1 712583 rs142048655 T C . PASS AF=0.0023907 ES:SE:LP:AF:ID 0.585035:0.129531:0.48195:0.0023907:rs142048655
1 713337 rs184249808 G A . PASS AF=0.0024171 ES:SE:LP:AF:ID 0.376975:0.163212:-0.181077:0.0024171:rs184249808
1 715211 rs184426933 C G . PASS AF=0.00313049 ES:SE:LP:AF:ID 0.499511:0.121505:2.13724:0.00313049:rs184426933
1 720468 rs187315357 G A . PASS AF=0.00377569 ES:SE:LP:AF:ID 0.363827:0.12849:-0.302424:0.00377569:rs187315357
1 723379 rs181223789 T A . PASS AF=0.00241745 ES:SE:LP:AF:ID 0.582859:0.129005:0.511315:0.00241745:rs181223789
1 736689 rs181876450 T C . PASS AF=0.00645792 ES:SE:LP:AF:ID 0.303149:0.108689:0.134345:0.00645792:rs181876450
1 745642 rs200097270 AC A . PASS AF=0.0141252 ES:SE:LP:AF:ID 0.305535:0.0738519:0.418791:0.0141252:rs200097270
1 748332 rs182373484 T C . PASS AF=0.00411936 ES:SE:LP:AF:ID 0.353748:0.126618:0.169099:0.00411936:rs182373484
1 748524 rs144265613 C T . PASS AF=0.0030819 ES:SE:LP:AF:ID 0.354413:0.142328:-0.419984:0.0030819:rs144265613
1 755435 rs184270342 T G . PASS AF=0.00143177 ES:SE:LP:AF:ID 0.581506:0.180259:-0.764179:0.00143177:rs184270342
1 767811 rs140378911 G C . PASS AF=0.0229196 ES:SE:LP:AF:ID 0.301416:0.0583518:0.922283:0.0229196:rs140378911
1 770281 rs188583355 T A . PASS AF=0.00215254 ES:SE:LP:AF:ID 0.419804:0.160753:0.328452:0.00215254:rs188583355
1 772172 rs141427868 C G . PASS AF=0.00137714 ES:SE:LP:AF:ID 0.315806:0.232257:0.114382:0.00137714:rs141427868
1 775426 rs2905037 G A . PASS AF=0.998058 ES:SE:LP:AF:ID 0.35343:0.185015:1.21957:0.998058:rs2905037
1 783632 rs193023236 G A . PASS AF=0.0030342 ES:SE:LP:AF:ID 0.326872:0.15418:0.00821502:0.0030342:rs193023236
1 789256 rs3131939 T C . PASS AF=0.989984 ES:SE:LP:AF:ID 0.323458:0.0847601:0.734216:0.989984:rs3131939
1 791932 rs149451138 C T . PASS AF=0.0035666 ES:SE:LP:AF:ID 0.304673:0.146634:-0.013166:0.0035666:rs149451138
1 793470 rs184843908 G A . PASS AF=0.0103438 ES:SE:LP:AF:ID 0.302945:0.0860253:1.30623:0.0103438:rs184843908
1 794319 rs186495636 G A . PASS AF=0.00144783 ES:SE:LP:AF:ID 0.349671:0.214841:0.367142:0.00144783:rs186495636
1 794368 rs191334345 G A . PASS AF=0.0018618 ES:SE:LP:AF:ID 0.528108:0.155663:0.12612:0.0018618:rs191334345
1 794787 rs183239437 A G . PASS AF=0.00199079 ES:SE:LP:AF:ID 0.370662:0.176137:1.47776:0.00199079:rs183239437
1 795131 rs187620961 G A . PASS AF=0.00216635 ES:SE:LP:AF:ID 0.423305:0.159573:0.329719:0.00216635:rs187620961
1 796298 rs143060708 C G . PASS AF=0.00302765 ES:SE:LP:AF:ID 0.380693:0.139629:1.02301:0.00302765:rs143060708
1 799346 rs184260340 C A . PASS AF=0.00265105 ES:SE:LP:AF:ID 0.304304:0.169821:1.01126:0.00265105:rs184260340
1 799389 rs187038627 G A . PASS AF=0.0091864 ES:SE:LP:AF:ID 0.319133:0.0888176:1.32913:0.0091864:rs187038627
1 801136 rs140609992 C T . PASS AF=0.00129571 ES:SE:LP:AF:ID 0.37602:0.218836:0.958256:0.00129571:rs140609992
1 801848 rs114911728 C A . PASS AF=0.00507533 ES:SE:LP:AF:ID 0.457065:0.0999171:1.47136:0.00507533:rs114911728
1 802671 rs191771620 T G . PASS AF=0.003486 ES:SE:LP:AF:ID 0.376492:0.132353:0.841553:0.003486:rs191771620
1 803192 rs190240504 C T . PASS AF=0.00267073 ES:SE:LP:AF:ID 0.468957:0.133352:-0.391803:0.00267073:rs190240504
1 809001 rs184951212 G A . PASS AF=0.00322111 ES:SE:LP:AF:ID 0.515872:0.117872:2.11274:0.00322111:rs184951212
1 810470 rs181485325 C A . PASS AF=0.00120633 ES:SE:LP:AF:ID 0.327783:0.238857:0.218073:0.00120633:rs181485325
1 810777 rs143204076 C G . PASS AF=0.0130197 ES:SE:LP:AF:ID 0.313919:0.0749837:-0.43058:0.0130197:rs143204076
1 812717 rs151199172 G T . PASS AF=0.00173359 ES:SE:LP:AF:ID 0.513626:0.160932:0.494497:0.00173359:rs151199172
1 819065 rs188466450 C T . PASS AF=0.0068528 ES:SE:LP:AF:ID 0.374311:0.0946198:0.500211:0.0068528:rs188466450
1 819467 rs187253977 T A . PASS AF=0.00151854 ES:SE:LP:AF:ID 0.306759:0.220291:1.12388:0.00151854:rs187253977
1 823790 rs143626389 G A . PASS AF=0.0209886 ES:SE:LP:AF:ID 0.311095:0.059865:2.44794:0.0209886:rs143626389
1 824357 rs80134645 C T . PASS AF=0.00289833 ES:SE:LP:AF:ID 0.652818:0.111692:2.67812:0.00289833:rs80134645
1 824666 rs140725574 C A . PASS AF=0.0047316 ES:SE:LP:AF:ID 0.401218:0.110035:1.97168:0.0047316:rs140725574
1 830791 rs184031231 C T . PASS AF=0.00704278 ES:SE:LP:AF:ID 0.316247:0.100482:-0.571112:0.00704278:rs184031231
1 834240 rs188158544 G A . PASS AF=0.00218954 ES:SE:LP:AF:ID 0.368178:0.173388:-0.42535:0.00218954:rs188158544
1 834830 rs116452738 G A . PASS AF=0.0121869 ES:SE:LP:AF:ID 0.392707:0.0709605:-0.437844:0.0121869:rs116452738
1 837096 rs144333274 C T . PASS AF=0.00684682 ES:SE:LP:AF:ID 0.322924:0.100812:-0.548135:0.00684682:rs144333274
1 837214 rs72631888 G C . PASS AF=0.0099436 ES:SE:LP:AF:ID 0.30113:0.088438:0.448115:0.0099436:rs72631888