Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST006979,TotalVariants=13705641,VariantsNotRead=0,HarmonisedVariants=13705641,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=426824.0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-26T21:49:17.901400",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/EBI-a-GCST006979_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/EBI-a-GCST006979.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/EBI-a-GCST006979_data.vcf.gz; Date=Sat Oct 26 22:12:11 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006979/ebi-a-GCST006979.vcf.gz; Date=Sun May 10 02:45:10 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/EBI-a-GCST006979.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sat Oct 26 22:31:40 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006979/EBI-a-GCST006979.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sat Oct 26 22:33:12 2019
Total time elapsed: 1.0m:32.04s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9571,
    "inflation_factor": 1.4295,
    "mean_EFFECT": 0,
    "n": "-Inf",
    "n_snps": 13705641,
    "n_clumped_hits": 512,
    "n_p_sig": 102921,
    "n_mono": 0,
    "n_ns": 46,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 1323353,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor TRUE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 64 0 13673531 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 5 0 15 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 4 0 19 0 NA NA NA NA NA NA NA NA NA NA
logical N 13691137 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.636530e+00 5.774686e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.300000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.906057e+07 5.615464e+07 173.0000000 3.293083e+07 6.989370e+07 1.146830e+08 2.492330e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 2.350000e-05 2.146130e-02 -0.5642760 -5.834800e-03 -3.300000e-06 5.843700e-03 4.527340e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.412520e-02 1.396780e-02 0.0018163 2.630200e-03 7.675000e-03 2.316680e-02 7.579040e-02 ▇▂▂▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.376667e-01 3.066161e-01 0.0000000 1.600000e-01 4.199997e-01 6.999999e-01 1.000000e+00 ▇▅▅▅▅
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.291482e-01 3.083848e-01 0.0000000 1.431064e-01 4.037189e-01 6.961422e-01 9.999996e-01 ▇▅▅▅▅
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 1.412673e-01 2.344749e-01 0.0005010 1.907000e-03 1.595900e-02 1.764910e-01 9.995000e-01 ▇▁▁▁▁
numeric AF_reference 1323353 0.9033424 NA NA NA NA NA NA NA 1.571871e-01 2.334485e-01 0.0000000 1.797100e-03 3.694090e-02 2.208470e-01 1.000000e+00 ▇▁▁▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 13169 rs1436530583 A G -0.0145119 0.0248848 0.5900000 0.5597834 0.997287 NA NA
1 13178 rs1181355646 G A 0.0025553 0.0608671 0.8700001 0.9665132 0.000626 NA NA
1 17661 rs1199908028 G A 0.0215497 0.0598973 0.9800000 0.7190135 0.000566 NA NA
1 55326 rs3107975 T C 0.0324378 0.0181701 0.2500000 0.0742241 0.008350 0.0459265 NA
1 55351 rs531766459 T A -0.0646877 0.0517019 0.3400001 0.2108736 0.000508 0.0007987 NA
1 55389 rs1190986229 T C -0.0119578 0.0180115 0.9199999 0.5067556 0.004180 NA NA
1 59036 rs1481837182 A G -0.0008116 0.0557375 0.9400001 0.9883818 0.000649 NA NA
1 64904 rs1452689085 T G 0.1134560 0.0564493 0.0259998 0.0444445 0.000644 NA NA
1 64908 rs540391097 A G -0.0385734 0.0482376 0.7899998 0.4239112 0.000638 0.0001997 NA
1 69618 rs1220828488 G A 0.0506224 0.0512339 0.6899999 0.3231210 0.000687 NA NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
23 154743324 rs62618044 T C -0.0008665 0.0018956 0.6475987 0.6475997 0.422638 0.1353640 NA
23 154788637 rs73247699 G A -0.0004690 0.0077948 0.9520229 0.9520230 0.014749 0.0031788 NA
23 154821956 rs5940536 G A -0.0019294 0.0049016 0.6938618 0.6938628 0.038389 0.0389404 NA
23 154846305 rs5940404 T C 0.0099740 0.0043470 0.0217646 0.0217641 0.049700 0.0286093 NA
23 154851523 rs561841 G A 0.0021380 0.0021695 0.3243852 0.3243858 0.751743 0.6376160 NA
23 154859910 rs144293808 A C -0.0004569 0.0036458 0.9002740 0.9002740 0.070978 0.0196026 NA
23 154865915 rs601290 G A 0.0023134 0.0021697 0.2863077 0.2863088 0.751927 0.6381460 NA
23 154899846 rs473491 A G 0.0023925 0.0020745 0.2487912 0.2487902 0.713484 0.5290070 NA
23 154900890 rs150522543 C T -0.0154038 0.0044631 0.0005579 0.0005578 0.046448 0.0105960 NA
23 154923374 rs111332691 T A 0.0003770 0.0045499 0.9339699 0.9339697 0.044516 0.0116556 NA

bcf preview

1   13169   rs1436530583    A   G   .   PASS    AF=0.997287 ES:SE:LP:AF:ID  -0.0145119:0.0248848:0.229148:0.997287:rs1436530583
1   13178   rs1181355646    G   A   .   PASS    AF=0.000626 ES:SE:LP:AF:ID  0.00255531:0.0608671:0.0604807:0.000626:rs1181355646
1   17661   rs1199908028    G   A   .   PASS    AF=0.000566 ES:SE:LP:AF:ID  0.0215497:0.0598973:0.00877392:0.000566:rs1199908028
1   55326   rs3107975   T   C   .   PASS    AF=0.00835  ES:SE:LP:AF:ID  0.0324378:0.0181701:0.60206:0.00835:rs3107975
1   55351   rs531766459 T   A   .   PASS    AF=0.000508 ES:SE:LP:AF:ID  -0.0646877:0.0517019:0.468521:0.000508:rs531766459
1   55389   rs1190986229    T   C   .   PASS    AF=0.00418  ES:SE:LP:AF:ID  -0.0119578:0.0180115:0.0362122:0.00418:rs1190986229
1   59036   rs1481837182    A   G   .   PASS    AF=0.000649 ES:SE:LP:AF:ID  -0.000811637:0.0557375:0.0268721:0.000649:rs1481837182
1   64904   rs1452689085    T   G   .   PASS    AF=0.000644 ES:SE:LP:AF:ID  0.113456:0.0564493:1.58503:0.000644:rs1452689085
1   64908   rs540391097 A   G   .   PASS    AF=0.000638 ES:SE:LP:AF:ID  -0.0385734:0.0482376:0.102373:0.000638:rs540391097
1   69618   rs1220828488    G   A   .   PASS    AF=0.000687 ES:SE:LP:AF:ID  0.0506224:0.0512339:0.161151:0.000687:rs1220828488
1   70728   rs1259734071    C   T   .   PASS    AF=0.002156 ES:SE:LP:AF:ID  0.0382604:0.0325851:0.236572:0.002156:rs1259734071
1   74356   rs1374516807    T   C   .   PASS    AF=0.996708 ES:SE:LP:AF:ID  0.0444413:0.0245459:0.408935:0.996708:rs1374516807
1   76709   rs1376019375    T   A   .   PASS    AF=0.999254 ES:SE:LP:AF:ID  -0.113533:0.0579697:0.958607:0.999254:rs1376019375
1   79033   rs2462495   A   G   .   PASS    AF=0.998739 ES:SE:LP:AF:ID  -0.0408334:0.0417941:0.420216:0.998739:rs2462495
1   81120   rs1180184210    G   C   .   PASS    AF=0.998439 ES:SE:LP:AF:ID  -0.0436694:0.0321019:0.744727:0.998439:rs1180184210
1   88166   rs1329210408    T   C   .   PASS    AF=0.997813 ES:SE:LP:AF:ID  -0.0216597:0.0298656:0.366532:0.997813:rs1329210408
1   91311   rs1354585492    T   C   .   PASS    AF=0.997673 ES:SE:LP:AF:ID  -0.0096961:0.0258393:0.455932:0.997673:rs1354585492
1   115967  rs1310910178    C   T   .   PASS    AF=0.002539 ES:SE:LP:AF:ID  0.0474087:0.0318486:1.05552:0.002539:rs1310910178
1   121759  rs975013924 C   A   .   PASS    AF=0.007699 ES:SE:LP:AF:ID  0.00899462:0.0127507:0.346787:0.007699:rs975013924
1   123130  rs1235743598    T   C   .   PASS    AF=0.994572 ES:SE:LP:AF:ID  -0.0115286:0.0195075:0.207608:0.994572:rs1235743598
1   125590  rs1323463760    G   A   .   PASS    AF=0.999213 ES:SE:LP:AF:ID  -0.000482408:0.0585467:0.0222764:0.999213:rs1323463760
1   126133  rs531293975 G   T   .   PASS    AF=0.998568 ES:SE:LP:AF:ID  -0.0372818:0.0379441:0.443698:0.998568:rs531293975
1   128927  rs1180010278    A   G   .   PASS    AF=0.999431 ES:SE:LP:AF:ID  0.0011724:0.0517848:0.142668:0.999431:rs1180010278
1   157899  rs1339985321    G   C   .   PASS    AF=0.001261 ES:SE:LP:AF:ID  -0.0185585:0.0420713:0.200659:0.001261:rs1339985321
1   526736  rs28863004  C   G   .   PASS    AF=0.005795 ES:SE:LP:AF:ID  0.0341271:0.0219307:1.05552:0.005795:rs28863004
1   533198  rs78497331  C   T   .   PASS    AF=0.00096  ES:SE:LP:AF:ID  0.0570928:0.0523302:0.366532:0.00096:rs78497331
1   534583  rs6683466   C   G   .   PASS    AF=0.006663 ES:SE:LP:AF:ID  -0.0391271:0.020562:1.14267:0.006663:rs6683466
1   544584  rs576404767 C   T   .   PASS    AF=0.001838 ES:SE:LP:AF:ID  0.0464233:0.0298123:0.420216:0.001838:rs576404767
1   564397  rs1040654131    T   C   .   PASS    AF=0.000736 ES:SE:LP:AF:ID  -0.0640538:0.051681:1.27572:0.000736:rs1040654131
1   564862  rs1988726   T   C   .   PASS    AF=0.001322 ES:SE:LP:AF:ID  -0.00914868:0.044188:0.0604807:0.001322:rs1988726
1   565111  rs573042692 T   C   .   PASS    AF=0.00159  ES:SE:LP:AF:ID  -0.0147923:0.0350226:-0:0.00159:rs573042692
1   565130  rs371431021 G   A   .   PASS    AF=0.004552 ES:SE:LP:AF:ID  -0.0128653:0.0224764:0.39794:0.004552:rs371431021
1   565196  rs538567606 T   C   .   PASS    AF=0.002313 ES:SE:LP:AF:ID  0.0518051:0.031104:0.142668:0.002313:rs538567606
1   565205  rs201203786 G   A   .   PASS    AF=0.000633 ES:SE:LP:AF:ID  0.0479327:0.0518635:0.251812:0.000633:rs201203786
1   565282  rs567227003 A   G   .   PASS    AF=0.00055  ES:SE:LP:AF:ID  -0.11654:0.0632084:1.25181:0.00055:rs567227003
1   565469  rs554127336 C   T   .   PASS    AF=0.001427 ES:SE:LP:AF:ID  0.0328468:0.0428328:0.823909:0.001427:rs554127336
1   565470  rs544876160 G   A   .   PASS    AF=0.001029 ES:SE:LP:AF:ID  0.0171773:0.036241:0.468521:0.001029:rs544876160
1   565490  rs7349153   T   C   .   PASS    AF=0.00137  ES:SE:LP:AF:ID  0.0413744:0.044333:0.537602:0.00137:rs7349153
1   566024  rs6421779   G   A   .   PASS    AF=0.001306 ES:SE:LP:AF:ID  -0.00767672:0.0442919:-0:0.001306:rs6421779
1   566776  rs542499209 C   G   .   PASS    AF=0.000538 ES:SE:LP:AF:ID  0.136876:0.0583431:1.02228:0.000538:rs542499209
1   566875  rs2185539   C   T   .   PASS    AF=0.00067  ES:SE:LP:AF:ID  -0.0171112:0.051732:0.154902:0.00067:rs2185539
1   566933  rs113120793 A   G   .   PASS    AF=0.001315 ES:SE:LP:AF:ID  0.00707862:0.0452301:0.136677:0.001315:rs113120793
1   567006  rs565235853 G   T   .   PASS    AF=0.003042 ES:SE:LP:AF:ID  0.0403815:0.0201212:0.69897:0.003042:rs565235853
1   567726  rs560688216 T   C   .   PASS    AF=0.000529 ES:SE:LP:AF:ID  0.029017:0.0718887:0.0655015:0.000529:rs560688216
1   567867  rs2000096   A   G   .   PASS    AF=0.002893 ES:SE:LP:AF:ID  0.0416556:0.0308178:0.958607:0.002893:rs2000096
1   568072  rs2853820   A   G   .   PASS    AF=0.001538 ES:SE:LP:AF:ID  0.0252752:0.0405781:0.619789:0.001538:rs2853820
1   569604  rs9645429   G   A   .   PASS    AF=0.001682 ES:SE:LP:AF:ID  -0.0556937:0.0362161:0.823909:0.001682:rs9645429
1   570161  rs572999760 G   A   .   PASS    AF=0.001195 ES:SE:LP:AF:ID  0.0301816:0.0477755:0.346787:0.001195:rs572999760
1   570247  rs879960388 T   C   .   PASS    AF=0.000841 ES:SE:LP:AF:ID  -0.0856686:0.0569653:0.508638:0.000841:rs879960388
1   592007  rs771664146 G   A   .   PASS    AF=0.000524 ES:SE:LP:AF:ID  -0.0828862:0.0629348:0.744727:0.000524:rs771664146