{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST006867,TotalVariants=5030727,VariantsNotRead=0,HarmonisedVariants=5030727,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=1178.0,TotalCases=61714.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:41:44.193552",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/EBI-a-GCST006867_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/EBI-a-GCST006867.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/EBI-a-GCST006867_data.vcf.gz; Date=Sat Oct 26 21:54:26 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006867/ebi-a-GCST006867.vcf.gz; Date=Sun May 10 10:12:34 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/EBI-a-GCST006867.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:18:11 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006867/EBI-a-GCST006867.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:18:44 2019
Total time elapsed: 33.21s
{
"af_correlation": 0.9274,
"inflation_factor": 1.416,
"mean_EFFECT": 0.0003,
"n": "-Inf",
"n_snps": 5030727,
"n_clumped_hits": 118,
"n_p_sig": 5967,
"n_mono": 0,
"n_ns": 0,
"n_mac": 0,
"is_snpid_unique": true,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 24749,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | TRUE |
n | TRUE |
is_snpid_non_unique | FALSE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | TRUE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.000000 | 3 | 35 | 0 | 5021057 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 5021057 | 0.000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 8.410593e+00 | 5.606336e+00 | 1.0000e+00 | 4.000000e+00 | 7.000000e+00 | 1.200000e+01 | 2.200000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 7.964176e+07 | 5.551137e+07 | 1.1336e+04 | 3.391265e+07 | 7.087940e+07 | 1.145370e+08 | 2.491746e+08 | ▇▇▅▂▁ |
numeric | EFFECT | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 2.629000e-04 | 1.589620e-02 | -1.5690e-01 | -8.700000e-03 | 2.000000e-04 | 9.000000e-03 | 3.059000e-01 | ▁▇▁▁▁ |
numeric | SE | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 1.221080e-02 | 5.470800e-03 | 3.6000e-03 | 8.300000e-03 | 1.000000e-02 | 1.400000e-02 | 4.170000e-02 | ▇▃▁▁▁ |
numeric | PVAL | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 4.422006e-01 | 3.021671e-01 | 0.0000e+00 | 1.661001e-01 | 4.221998e-01 | 7.032002e-01 | 9.988000e-01 | ▇▆▅▅▅ |
numeric | PVAL_ztest | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 4.421961e-01 | 3.021625e-01 | 0.0000e+00 | 1.661701e-01 | 4.223244e-01 | 7.032386e-01 | 9.979003e-01 | ▇▆▅▅▅ |
numeric | AF | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 3.112576e-01 | 2.593001e-01 | 1.0039e-02 | 9.290940e-02 | 2.303260e-01 | 4.820870e-01 | 9.899500e-01 | ▇▃▂▂▁ |
numeric | AF_reference | 24749 | 0.995071 | NA | NA | NA | NA | NA | NA | NA | 3.121136e-01 | 2.466831e-01 | 5.9900e-04 | 1.092250e-01 | 2.398160e-01 | 4.718450e-01 | 9.988020e-01 | ▇▅▃▂▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 785050 | rs2905062 | G | A | -0.0082 | 0.0116 | 0.4790998 | 0.4796308 | 0.8680250 | 0.626997 | NA |
1 | 1087683 | rs9442380 | T | C | -0.0016 | 0.0161 | 0.9213001 | 0.9208374 | 0.9351570 | 0.839058 | NA |
1 | 1090010 | rs9442361 | C | A | -0.0061 | 0.0157 | 0.6950003 | 0.6976201 | 0.9329430 | 0.824281 | NA |
1 | 1092599 | rs56863140 | G | C | -0.0046 | 0.0156 | 0.7664997 | 0.7680918 | 0.9328520 | 0.831270 | NA |
1 | 1096908 | rs1539636 | T | C | -0.0069 | 0.0155 | 0.6549995 | 0.6562032 | 0.9317060 | 0.816294 | NA |
1 | 1097100 | rs1539634 | C | T | -0.0078 | 0.0156 | 0.6186001 | 0.6170751 | 0.9328110 | 0.814097 | NA |
1 | 1097287 | rs9442384 | T | C | -0.0069 | 0.0156 | 0.6612002 | 0.6582666 | 0.9330790 | 0.818490 | NA |
1 | 1122539 | rs12063897 | A | G | 0.0303 | 0.0139 | 0.0290797 | 0.0292681 | 0.0915407 | 0.107029 | NA |
1 | 1122916 | rs28460227 | A | G | 0.0297 | 0.0139 | 0.0323601 | 0.0326232 | 0.0913276 | 0.103435 | NA |
1 | 1122937 | rs28648687 | G | A | 0.0297 | 0.0139 | 0.0322099 | 0.0326232 | 0.0914160 | 0.103435 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51140316 | rs739365 | C | T | 0.0067 | 0.0084 | 0.4208003 | 0.4250916 | 0.3055250 | 0.4363020 | NA |
22 | 51145136 | rs73174415 | C | T | 0.0169 | 0.0155 | 0.2765999 | 0.2755711 | 0.0703008 | 0.0425319 | NA |
22 | 51145746 | rs142356721 | C | T | 0.0163 | 0.0155 | 0.2942998 | 0.2929772 | 0.0701431 | 0.0425319 | NA |
22 | 51146439 | rs6010060 | A | G | 0.0174 | 0.0156 | 0.2664999 | 0.2646856 | 0.0706151 | 0.0551118 | NA |
22 | 51148995 | rs9616946 | G | A | 0.0166 | 0.0093 | 0.0731594 | 0.0742700 | 0.2301380 | 0.2408150 | NA |
22 | 51150473 | rs5770820 | G | A | 0.0156 | 0.0092 | 0.0882897 | 0.0899518 | 0.2307600 | 0.2462060 | NA |
22 | 51175626 | rs3810648 | A | G | 0.0108 | 0.0165 | 0.5116005 | 0.5127605 | 0.0608362 | 0.1084270 | NA |
22 | 51178090 | rs2285395 | G | A | -0.0038 | 0.0161 | 0.8129000 | 0.8134134 | 0.0527946 | 0.0666933 | NA |
22 | 51196164 | rs8136603 | A | T | -0.0095 | 0.0176 | 0.5892004 | 0.5893538 | 0.0519345 | 0.1427720 | NA |
22 | 51197602 | rs187225588 | T | A | -0.0063 | 0.0181 | 0.7265006 | 0.7277904 | 0.0504618 | 0.0175719 | NA |
1 785050 rs2905062 G A . PASS AF=0.868025 ES:SE:LP:AF:ID -0.0082:0.0116:0.319574:0.868025:rs2905062
1 1087683 rs9442380 T C . PASS AF=0.935157 ES:SE:LP:AF:ID -0.0016:0.0161:0.0355989:0.935157:rs9442380
1 1090010 rs9442361 C A . PASS AF=0.932943 ES:SE:LP:AF:ID -0.0061:0.0157:0.158015:0.932943:rs9442361
1 1092599 rs56863140 G C . PASS AF=0.932852 ES:SE:LP:AF:ID -0.0046:0.0156:0.115488:0.932852:rs56863140
1 1096908 rs1539636 T C . PASS AF=0.931706 ES:SE:LP:AF:ID -0.0069:0.0155:0.183759:0.931706:rs1539636
1 1097100 rs1539634 C T . PASS AF=0.932811 ES:SE:LP:AF:ID -0.0078:0.0156:0.20859:0.932811:rs1539634
1 1097287 rs9442384 T C . PASS AF=0.933079 ES:SE:LP:AF:ID -0.0069:0.0156:0.179667:0.933079:rs9442384
1 1122539 rs12063897 A G . PASS AF=0.0915407 ES:SE:LP:AF:ID 0.0303:0.0139:1.53641:0.0915407:rs12063897
1 1122916 rs28460227 A G . PASS AF=0.0913276 ES:SE:LP:AF:ID 0.0297:0.0139:1.48999:0.0913276:rs28460227
1 1122937 rs28648687 G A . PASS AF=0.091416 ES:SE:LP:AF:ID 0.0297:0.0139:1.49201:0.091416:rs28648687
1 1124819 rs6694487 C T . PASS AF=0.0916791 ES:SE:LP:AF:ID 0.0308:0.0139:1.58153:0.0916791:rs6694487
1 1125220 rs12065129 C T . PASS AF=0.0915307 ES:SE:LP:AF:ID 0.0314:0.0139:1.62949:0.0915307:rs12065129
1 1127101 rs9659458 C A . PASS AF=0.0915671 ES:SE:LP:AF:ID 0.0309:0.0139:1.58386:0.0915671:rs9659458
1 1127137 rs12062271 A C . PASS AF=0.0921988 ES:SE:LP:AF:ID 0.0312:0.0138:1.62142:0.0921988:rs12062271
1 1127330 rs12061357 C T . PASS AF=0.0943436 ES:SE:LP:AF:ID 0.0312:0.0137:1.64589:0.0943436:rs12061357
1 1129122 rs9659213 G C . PASS AF=0.0919861 ES:SE:LP:AF:ID 0.0325:0.0138:1.72886:0.0919861:rs9659213
1 1129789 rs12060374 G C . PASS AF=0.0919428 ES:SE:LP:AF:ID 0.0313:0.0138:1.62415:0.0919428:rs12060374
1 1129920 rs12060422 G A . PASS AF=0.0920677 ES:SE:LP:AF:ID 0.0316:0.0138:1.65092:0.0920677:rs12060422
1 1130727 rs10907175 A C . PASS AF=0.0912872 ES:SE:LP:AF:ID 0.0325:0.0138:1.73779:0.0912872:rs10907175
1 1130855 rs10907176 T C . PASS AF=0.083123 ES:SE:LP:AF:ID 0.025:0.0145:1.07397:0.083123:rs10907176
1 1131052 rs12066103 C T . PASS AF=0.0918153 ES:SE:LP:AF:ID 0.0312:0.0138:1.61279:0.0918153:rs12066103
1 1131236 rs12062042 G T . PASS AF=0.0914339 ES:SE:LP:AF:ID 0.0311:0.0139:1.59843:0.0914339:rs12062042
1 1472873 rs4259576 T A . PASS AF=0.303646 ES:SE:LP:AF:ID 0.0063:0.0086:0.335076:0.303646:rs4259576
1 1474167 rs1571149 A G . PASS AF=0.318991 ES:SE:LP:AF:ID 0.0077:0.0084:0.440333:0.318991:rs1571149
1 1474304 rs1571150 C A . PASS AF=0.298446 ES:SE:LP:AF:ID 0.0066:0.0086:0.353106:0.298446:rs1571150
1 1474871 rs9439465 G C . PASS AF=0.30418 ES:SE:LP:AF:ID 0.0069:0.0084:0.381743:0.30418:rs9439465
1 1477244 rs7290 T C . PASS AF=0.289866 ES:SE:LP:AF:ID 0.0078:0.0086:0.435926:0.289866:rs7290
1 1478153 rs3766180 T C . PASS AF=0.286858 ES:SE:LP:AF:ID 0.0073:0.0085:0.407934:0.286858:rs3766180
1 1478173 rs3766179 C G . PASS AF=0.287991 ES:SE:LP:AF:ID 0.0077:0.0087:0.42539:0.287991:rs3766179
1 1478180 rs3766178 T C . PASS AF=0.286942 ES:SE:LP:AF:ID 0.0075:0.0086:0.414765:0.286942:rs3766178
1 1478880 rs6665973 T G . PASS AF=0.289795 ES:SE:LP:AF:ID 0.0079:0.0086:0.446481:0.289795:rs6665973
1 1479333 rs7533 A G . PASS AF=0.289445 ES:SE:LP:AF:ID 0.0077:0.0087:0.429457:0.289445:rs7533
1 1481175 rs9329413 C A . PASS AF=0.289375 ES:SE:LP:AF:ID 0.0076:0.0086:0.422623:0.289375:rs9329413
1 1483010 rs7517401 G A . PASS AF=0.316601 ES:SE:LP:AF:ID 0.0075:0.0085:0.423313:0.316601:rs7517401
1 1484970 rs7515814 C G . PASS AF=0.319279 ES:SE:LP:AF:ID 0.0063:0.0085:0.335076:0.319279:rs7515814
1 1489072 rs3930748 A G . PASS AF=0.319526 ES:SE:LP:AF:ID 0.0055:0.0083:0.291919:0.319526:rs3930748
1 1489670 rs7531530 C T . PASS AF=0.273102 ES:SE:LP:AF:ID 0.009:0.0088:0.513428:0.273102:rs7531530
1 1489928 rs7366884 T C . PASS AF=0.272689 ES:SE:LP:AF:ID 0.0083:0.0088:0.460422:0.272689:rs7366884
1 1490074 rs7366635 A G . PASS AF=0.321041 ES:SE:LP:AF:ID 0.0061:0.0082:0.334419:0.321041:rs7366635
1 1490161 rs3753332 A G . PASS AF=0.321099 ES:SE:LP:AF:ID 0.0065:0.0084:0.357239:0.321099:rs3753332
1 1490232 rs3753331 T C . PASS AF=0.320995 ES:SE:LP:AF:ID 0.006:0.0085:0.321027:0.320995:rs3753331
1 1490559 rs3820075 A G . PASS AF=0.272986 ES:SE:LP:AF:ID 0.0077:0.0088:0.414539:0.272986:rs3820075
1 1490627 rs3753330 T A . PASS AF=0.321085 ES:SE:LP:AF:ID 0.0059:0.0083:0.319846:0.321085:rs3753330
1 1491251 rs12048706 T C . PASS AF=0.273645 ES:SE:LP:AF:ID 0.0065:0.0088:0.339135:0.273645:rs12048706
1 1495083 rs6667347 G C . PASS AF=0.305127 ES:SE:LP:AF:ID 0.0055:0.0086:0.280834:0.305127:rs6667347
1 1496145 rs12410854 T C . PASS AF=0.274505 ES:SE:LP:AF:ID 0.0064:0.0088:0.328179:0.274505:rs12410854
1 1497008 rs3766170 T C . PASS AF=0.320269 ES:SE:LP:AF:ID 0.0064:0.0085:0.343614:0.320269:rs3766170
1 1497201 rs3766169 A C . PASS AF=0.289532 ES:SE:LP:AF:ID 0.007:0.0087:0.373352:0.289532:rs3766169
1 1499298 rs9439468 A G . PASS AF=0.31909 ES:SE:LP:AF:ID 0.0062:0.0085:0.328272:0.31909:rs9439468
1 1500941 rs6603791 A G . PASS AF=0.318872 ES:SE:LP:AF:ID 0.0061:0.0084:0.329383:0.318872:rs6603791