{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST006698,TotalVariants=11484376,VariantsNotRead=0,HarmonisedVariants=11484375,VariantsNotHarmonised=1,SwitchedAlleles=0,TotalControls=79767.0,TotalCases=7182.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:47:11.595996",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/EBI-a-GCST006698_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/EBI-a-GCST006698.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/EBI-a-GCST006698_data.vcf.gz; Date=Sat Oct 26 22:07:58 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006698/ebi-a-GCST006698.vcf.gz; Date=Sat May 9 16:32:23 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/EBI-a-GCST006698.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:32:13 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006698/EBI-a-GCST006698.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:33:30 2019
Total time elapsed: 1.0m:16.83s
{
"af_correlation": 0.9528,
"inflation_factor": 1.0966,
"mean_EFFECT": 0,
"n": "-Inf",
"n_snps": 11484375,
"n_clumped_hits": 6,
"n_p_sig": 88,
"n_mono": 0,
"n_ns": 2138,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 575560,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 64 | 0 | 11453283 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 60 | 0 | 398 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 50 | 0 | 350 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 11467239 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.857293e+00 | 5.769229e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.300000e+01 | ▇▆▅▃▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.421713e+07 | 5.206897e+07 | 173.0000000 | 3.148566e+07 | 6.643325e+07 | 1.081001e+08 | 2.492385e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.600000e-05 | 1.458890e-02 | -0.2692540 | -3.809400e-03 | -2.800000e-05 | 3.743700e-03 | 2.418850e-01 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.024310e-02 | 9.757200e-03 | 0.0019615 | 2.538200e-03 | 5.587900e-03 | 1.588740e-02 | 1.298780e-01 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.831922e-01 | 2.928641e-01 | 0.0000000 | 2.300001e-01 | 4.799997e-01 | 7.400005e-01 | 1.000000e+00 | ▇▇▇▆▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.831805e-01 | 2.927995e-01 | 0.0000000 | 2.256563e-01 | 4.768738e-01 | 7.366373e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.664259e-01 | 2.446054e-01 | 0.0010010 | 4.439000e-03 | 3.535200e-02 | 2.393440e-01 | 9.990000e-01 | ▇▁▁▁▁ |
numeric | AF_reference | 575560 | 0.9498083 | NA | NA | NA | NA | NA | NA | NA | 1.742598e-01 | 2.396519e-01 | 0.0000000 | 2.995200e-03 | 5.630990e-02 | 2.607830e-01 | 1.000000e+00 | ▇▂▁▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13169 | rs1436530583 | A | G | -0.0286853 | 0.0268154 | 0.2599998 | 0.2847398 | 0.997297 | NA | NA |
1 | 15850 | rs575961614 | G | A | -0.0120681 | 0.0097502 | 0.2300001 | 0.2158168 | 0.021204 | 0.0005990 | NA |
1 | 15893 | rs555382915 | T | C | 0.0024267 | 0.0030264 | 0.4000000 | 0.4226495 | 0.779012 | 0.0001997 | NA |
1 | 30912 | rs571608907 | C | T | -0.0210789 | 0.0270629 | 0.4600002 | 0.4360472 | 0.996758 | 0.0001997 | NA |
1 | 49298 | rs200943160 | T | C | 0.0027085 | 0.0034997 | 0.4199997 | 0.4389706 | 0.622588 | 0.7821490 | NA |
1 | 54676 | rs2462492 | C | T | -0.0054304 | 0.0034647 | 0.1100001 | 0.1170345 | 0.403170 | NA | NA |
1 | 54712 | rs568927205 | T | TTTTC | 0.0034351 | 0.0027572 | 0.2099999 | 0.2128092 | 0.585907 | NA | NA |
1 | 55326 | rs3107975 | T | C | 0.0094272 | 0.0194006 | 0.5999997 | 0.6270209 | 0.008398 | 0.0459265 | NA |
1 | 55389 | rs1190986229 | T | C | 0.0144910 | 0.0197100 | 0.4799997 | 0.4622113 | 0.004115 | NA | NA |
1 | 70728 | rs1259734071 | C | T | 0.0246099 | 0.0360676 | 0.5000000 | 0.4950322 | 0.002112 | NA | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51226692 | rs150189434 | G | A | -0.0223537 | 0.0255584 | 0.3900004 | 0.3817847 | 0.001767 | 0.0155751 | NA |
22 | 51227766 | rs186062720 | T | C | -0.0023597 | 0.0245058 | 0.9599999 | 0.9232900 | 0.002361 | 0.0005990 | NA |
22 | 51229805 | rs9616985 | T | C | -0.0026121 | 0.0037901 | 0.4600002 | 0.4906935 | 0.074303 | 0.0730831 | NA |
22 | 51230673 | rs555680442 | G | C | 0.0111500 | 0.0255732 | 0.6899999 | 0.6628343 | 0.002249 | 0.0017971 | NA |
22 | 51231424 | rs539541647 | A | G | 0.0238609 | 0.0310910 | 0.4500005 | 0.4428119 | 0.001254 | 0.0011981 | NA |
22 | 51232488 | rs376461333 | A | G | 0.0091299 | 0.0090578 | 0.3200000 | 0.3134731 | 0.020062 | NA | NA |
22 | 51234033 | rs764597437 | C | T | 0.0491655 | 0.0339878 | 0.1499999 | 0.1480193 | 0.001199 | NA | NA |
22 | 51237063 | rs3896457 | T | C | -0.0006334 | 0.0023268 | 0.8000000 | 0.7854555 | 0.299581 | 0.2050720 | NA |
22 | 51239586 | rs535432390 | T | G | -0.0004435 | 0.0217797 | 1.0000000 | 0.9837542 | 0.002825 | 0.0001997 | NA |
23 | 65456737 | rs77978087 | G | C | -0.0031422 | 0.0023868 | 0.1800002 | 0.1880145 | 0.507189 | NA | NA |
1 13169 rs1436530583 A G . PASS AF=0.997297 ES:SE:LP:AF:ID -0.0286853:0.0268154:0.585027:0.997297:rs1436530583
1 15850 rs575961614 G A . PASS AF=0.021204 ES:SE:LP:AF:ID -0.0120681:0.0097502:0.638272:0.021204:rs575961614
1 15893 rs555382915 T C . PASS AF=0.779012 ES:SE:LP:AF:ID 0.0024267:0.00302644:0.39794:0.779012:rs555382915
1 30912 rs571608907 C T . PASS AF=0.996758 ES:SE:LP:AF:ID -0.0210789:0.0270629:0.337242:0.996758:rs571608907
1 49298 rs10399793 T C . PASS AF=0.622588 ES:SE:LP:AF:ID 0.00270854:0.00349971:0.376751:0.622588:rs10399793
1 54676 rs2462492 C T . PASS AF=0.40317 ES:SE:LP:AF:ID -0.00543039:0.00346471:0.958607:0.40317:rs2462492
1 54712 rs568927205 T TTTTC . PASS AF=0.585907 ES:SE:LP:AF:ID 0.00343511:0.00275718:0.677781:0.585907:rs568927205
1 55326 rs3107975 T C . PASS AF=0.008398 ES:SE:LP:AF:ID 0.00942722:0.0194006:0.221849:0.008398:rs3107975
1 55389 rs1190986229 T C . PASS AF=0.004115 ES:SE:LP:AF:ID 0.014491:0.01971:0.318759:0.004115:rs1190986229
1 70728 rs1259734071 C T . PASS AF=0.002112 ES:SE:LP:AF:ID 0.0246099:0.0360676:0.30103:0.002112:rs1259734071
1 74356 rs1374516807 T C . PASS AF=0.996679 ES:SE:LP:AF:ID -0.046166:0.0258863:1.08619:0.996679:rs1374516807
1 79033 rs2462495 A G . PASS AF=0.998761 ES:SE:LP:AF:ID -0.107197:0.0450223:1.72125:0.998761:rs2462495
1 81120 rs1180184210 G C . PASS AF=0.998441 ES:SE:LP:AF:ID -0.00330402:0.0347455:0.0315171:0.998441:rs1180184210
1 82103 rs2020400 T C . PASS AF=0.924985 ES:SE:LP:AF:ID 0.00196794:0.00487096:0.154902:0.924985:rs2020400
1 86028 rs114608975 T C . PASS AF=0.10394 ES:SE:LP:AF:ID -0.00326746:0.00554907:0.267606:0.10394:rs114608975
1 88166 rs1329210408 T C . PASS AF=0.997848 ES:SE:LP:AF:ID -0.0398984:0.033624:0.568636:0.997848:rs1329210408
1 91311 rs1354585492 T C . PASS AF=0.997813 ES:SE:LP:AF:ID -0.0459409:0.0293036:0.920819:0.997813:rs1354585492
1 91536 rs6702460 G T . PASS AF=0.45815 ES:SE:LP:AF:ID 0.00262567:0.00341774:0.318759:0.45815:rs6702460
1 115967 rs1310910178 C T . PASS AF=0.002404 ES:SE:LP:AF:ID -0.0183743:0.035936:0.187087:0.002404:rs1310910178
1 121759 rs975013924 C A . PASS AF=0.007526 ES:SE:LP:AF:ID -0.00834705:0.0139961:0.251812:0.007526:rs975013924
1 123130 rs1235743598 T C . PASS AF=0.994698 ES:SE:LP:AF:ID -0.0034727:0.0218601:0.0604807:0.994698:rs1235743598
1 126133 rs531293975 G T . PASS AF=0.998629 ES:SE:LP:AF:ID -0.0419476:0.0426686:0.537602:0.998629:rs531293975
1 157899 rs1339985321 G C . PASS AF=0.001285 ES:SE:LP:AF:ID 0.0591693:0.0448102:0.721246:0.001285:rs1339985321
1 174747 rs1399732465 C T . PASS AF=0.026091 ES:SE:LP:AF:ID -0.00942678:0.00964806:0.431798:0.026091:rs1399732465
1 234313 rs8179466 C T . PASS AF=0.074628 ES:SE:LP:AF:ID 0.0106582:0.00674537:0.920819:0.074628:rs8179466
1 526736 rs28863004 C G . PASS AF=0.005783 ES:SE:LP:AF:ID 0.0230662:0.0239331:0.468521:0.005783:rs28863004
1 534192 rs6680723 C T . PASS AF=0.240816 ES:SE:LP:AF:ID -0.00111207:0.00391038:0.09691:0.240816:rs6680723
1 534583 rs6683466 C G . PASS AF=0.006844 ES:SE:LP:AF:ID -0.0258512:0.0218305:0.638272:0.006844:rs6683466
1 544584 rs576404767 C T . PASS AF=0.001876 ES:SE:LP:AF:ID 0.013745:0.0324328:0.148742:0.001876:rs576404767
1 546697 rs12025928 A G . PASS AF=0.913636 ES:SE:LP:AF:ID 0.00347752:0.00490889:0.30103:0.913636:rs12025928
1 564862 rs1988726 T C . PASS AF=0.001398 ES:SE:LP:AF:ID -0.0480551:0.0447394:0.522879:0.001398:rs1988726
1 565111 rs573042692 T C . PASS AF=0.001548 ES:SE:LP:AF:ID 0.0377341:0.0394465:0.455932:0.001548:rs573042692
1 565130 rs371431021 G A . PASS AF=0.00461 ES:SE:LP:AF:ID -0.0379975:0.0242685:0.886057:0.00461:rs371431021
1 565196 rs538567606 T C . PASS AF=0.002296 ES:SE:LP:AF:ID -0.0579437:0.0332496:1.05061:0.002296:rs538567606
1 565469 rs554127336 C T . PASS AF=0.001397 ES:SE:LP:AF:ID -0.018288:0.0476987:0.161151:0.001397:rs554127336
1 565470 rs544876160 G A . PASS AF=0.001021 ES:SE:LP:AF:ID -0.0134631:0.0397293:0.148742:0.001021:rs544876160
1 565490 rs7349153 T C . PASS AF=0.001406 ES:SE:LP:AF:ID -0.0492279:0.0470897:0.508638:0.001406:rs7349153
1 565870 rs9326619 T C . PASS AF=0.001592 ES:SE:LP:AF:ID -0.00767641:0.0443153:0.0409586:0.001592:rs9326619
1 566024 rs6421779 G A . PASS AF=0.001349 ES:SE:LP:AF:ID -0.0596918:0.0470505:0.677781:0.001349:rs6421779
1 566371 rs1832731 A G . PASS AF=0.001542 ES:SE:LP:AF:ID -0.01411:0.0458859:0.107905:0.001542:rs1832731
1 566792 rs9283152 T C . PASS AF=0.002128 ES:SE:LP:AF:ID 0.0146244:0.0405681:0.161151:0.002128:rs9283152
1 566933 rs113120793 A G . PASS AF=0.001361 ES:SE:LP:AF:ID -0.0236342:0.0473023:0.19382:0.001361:rs113120793
1 566960 rs2185540 T C . PASS AF=0.001454 ES:SE:LP:AF:ID -0.0220356:0.0468632:0.180456:0.001454:rs2185540
1 567006 rs565235853 G T . PASS AF=0.003 ES:SE:LP:AF:ID 0.0121044:0.0219906:0.221849:0.003:rs565235853
1 567867 rs2000096 A G . PASS AF=0.002936 ES:SE:LP:AF:ID -0.00652605:0.0328762:0.0705811:0.002936:rs2000096
1 568072 rs2853820 A G . PASS AF=0.001586 ES:SE:LP:AF:ID -0.0282728:0.0428354:0.283997:0.001586:rs2853820
1 568800 rs375217967 G A . PASS AF=0.016913 ES:SE:LP:AF:ID -0.0226657:0.0134043:1.03152:0.016913:rs375217967
1 569204 rs112660509 T C . PASS AF=0.001887 ES:SE:LP:AF:ID -0.0282496:0.04326:0.267606:0.001887:rs112660509
1 569543 rs538153094 G A . PASS AF=0.001549 ES:SE:LP:AF:ID -0.0168659:0.0469803:0.124939:0.001549:rs538153094
1 569604 rs9645429 G A . PASS AF=0.001746 ES:SE:LP:AF:ID 0.0403276:0.0383979:0.522879:0.001746:rs9645429