{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST006586,TotalVariants=11684850,VariantsNotRead=0,HarmonisedVariants=11684850,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=382500.0,StudyType=Continuous>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:59:22.146995",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586_data.vcf.gz; Date=Sat Oct 26 22:18:10 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006586/ebi-a-GCST006586.vcf.gz; Date=Sun May 10 11:16:35 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:42:34 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:43:55 2019
Total time elapsed: 1.0m:20.98s
{
"af_correlation": 0.9533,
"inflation_factor": 1.1653,
"mean_EFFECT": -4.1639e-06,
"n": "-Inf",
"n_snps": 11684850,
"n_clumped_hits": 38,
"n_p_sig": 1675,
"n_mono": 0,
"n_ns": 0,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 518145,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | TRUE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 64 | 0 | 11656289 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 11667950 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.632741e+00 | 5.759831e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▃▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.892424e+07 | 5.624972e+07 | 828.0000000 | 3.270011e+07 | 6.961637e+07 | 1.145811e+08 | 2.492283e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | -4.200000e-06 | 1.131080e-02 | -0.1295420 | -3.220800e-03 | -1.760000e-05 | 3.176200e-03 | 3.839540e-01 | ▁▇▁▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.124100e-03 | 7.566300e-03 | 0.0016538 | 2.112900e-03 | 4.494400e-03 | 1.254230e-02 | 4.914880e-02 | ▇▂▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.750860e-01 | 2.952425e-01 | 0.0000000 | 2.133138e-01 | 4.665530e-01 | 7.309388e-01 | 1.000000e+00 | ▇▇▆▆▆ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.750855e-01 | 2.952427e-01 | 0.0000000 | 2.133128e-01 | 4.665526e-01 | 7.309375e-01 | 9.999998e-01 | ▇▇▆▆▆ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.697883e-01 | 2.458976e-01 | 0.0010000 | 4.878400e-03 | 3.871630e-02 | 2.465700e-01 | 9.989990e-01 | ▇▁▁▁▁ |
numeric | AF_reference | 518145 | 0.9555925 | NA | NA | NA | NA | NA | NA | NA | 1.770107e-01 | 2.405649e-01 | 0.0000000 | 3.394600e-03 | 6.010380e-02 | 2.663740e-01 | 1.000000e+00 | ▇▂▁▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13169 | rs1436530583 | A | G | -0.0058613 | 0.0226964 | 0.7962151 | 0.7962148 | 0.9985420 | NA | NA |
1 | 15850 | rs575961614 | G | A | 0.0005526 | 0.0082323 | 0.9464860 | 0.9464862 | 0.0126043 | 0.0005990 | NA |
1 | 55326 | rs3107975 | T | C | 0.0138664 | 0.0164503 | 0.3992685 | 0.3992693 | 0.0024628 | 0.0459265 | NA |
1 | 55389 | rs1190986229 | T | C | 0.0060919 | 0.0163360 | 0.7092119 | 0.7092112 | 0.0037647 | NA | NA |
1 | 74356 | rs1374516807 | T | C | -0.0531140 | 0.0222333 | 0.0168978 | 0.0168971 | 0.9986180 | NA | NA |
1 | 82103 | rs2020400 | T | C | 0.0013912 | 0.0041094 | 0.7349537 | 0.7349526 | 0.9424290 | NA | NA |
1 | 86028 | rs114608975 | T | C | -0.0003634 | 0.0046830 | 0.9381401 | 0.9381400 | 0.0423959 | 0.0277556 | NA |
1 | 91311 | rs1354585492 | T | C | 0.0031813 | 0.0234575 | 0.8921229 | 0.8921229 | 0.9987490 | NA | NA |
1 | 121759 | rs975013924 | C | A | -0.0090759 | 0.0116137 | 0.4345212 | 0.4345194 | 0.0059176 | NA | NA |
1 | 123130 | rs1235743598 | T | C | 0.0164346 | 0.0179126 | 0.3588847 | 0.3588868 | 0.9977020 | NA | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51223637 | rs375798137 | G | A | -0.0023509 | 0.0037865 | 0.5346801 | 0.5346798 | 0.0540039 | 0.0788738 | NA |
22 | 51226692 | rs150189434 | G | A | 0.0106743 | 0.0229291 | 0.6415463 | 0.6415483 | 0.0013634 | 0.0155751 | NA |
22 | 51227766 | rs186062720 | T | C | -0.0102087 | 0.0215646 | 0.6359266 | 0.6359272 | 0.0018954 | 0.0005990 | NA |
22 | 51229805 | rs9616985 | T | C | 0.0032316 | 0.0032122 | 0.3143953 | 0.3143936 | 0.0734549 | 0.0730831 | NA |
22 | 51230673 | rs555680442 | G | C | -0.0007524 | 0.0220637 | 0.9727981 | 0.9727981 | 0.0016196 | 0.0017971 | NA |
22 | 51231424 | rs539541647 | A | G | -0.0101306 | 0.0259226 | 0.6959451 | 0.6959437 | 0.0014902 | 0.0011981 | NA |
22 | 51232488 | rs376461333 | A | G | -0.0025878 | 0.0075624 | 0.7322055 | 0.7322051 | 0.0123739 | NA | NA |
22 | 51234033 | rs764597437 | C | T | -0.0078950 | 0.0278643 | 0.7769177 | 0.7769171 | 0.0011464 | NA | NA |
22 | 51237063 | rs3896457 | T | C | -0.0009278 | 0.0019643 | 0.6366856 | 0.6366841 | 0.2968430 | 0.2050720 | NA |
22 | 51239586 | rs535432390 | T | G | 0.0351125 | 0.0177109 | 0.0474198 | 0.0474193 | 0.0032797 | 0.0001997 | NA |
1 13169 rs1436530583 A G . PASS AF=0.998542 ES:SE:LP:AF:ID -0.00586132:0.0226964:0.0989696:0.998542:rs1436530583
1 15850 rs575961614 G A . PASS AF=0.0126043 ES:SE:LP:AF:ID 0.000552552:0.0082323:0.0238858:0.0126043:rs575961614
1 55326 rs3107975 T C . PASS AF=0.00246275 ES:SE:LP:AF:ID 0.0138664:0.0164503:0.398735:0.00246275:rs3107975
1 55389 rs1190986229 T C . PASS AF=0.00376471 ES:SE:LP:AF:ID 0.00609195:0.016336:0.149224:0.00376471:rs1190986229
1 74356 rs1374516807 T C . PASS AF=0.998618 ES:SE:LP:AF:ID -0.053114:0.0222333:1.77217:0.998618:rs1374516807
1 82103 rs2020400 T C . PASS AF=0.942429 ES:SE:LP:AF:ID 0.00139123:0.00410944:0.13374:0.942429:rs2020400
1 86028 rs114608975 T C . PASS AF=0.0423959 ES:SE:LP:AF:ID -0.000363436:0.00468298:0.0277323:0.0423959:rs114608975
1 91311 rs1354585492 T C . PASS AF=0.998749 ES:SE:LP:AF:ID 0.00318127:0.0234575:0.0495753:0.998749:rs1354585492
1 121759 rs975013924 C A . PASS AF=0.00591765 ES:SE:LP:AF:ID -0.00907589:0.0116137:0.361989:0.00591765:rs975013924
1 123130 rs1235743598 T C . PASS AF=0.997702 ES:SE:LP:AF:ID 0.0164346:0.0179126:0.445045:0.997702:rs1235743598
1 174747 rs1399732465 C T . PASS AF=0.0114147 ES:SE:LP:AF:ID -0.00294248:0.00823842:0.142084:0.0114147:rs1399732465
1 234313 rs8179466 C T . PASS AF=0.0260356 ES:SE:LP:AF:ID 0.0102588:0.00567661:1.1504:0.0260356:rs8179466
1 526736 rs28863004 C G . PASS AF=0.00165098 ES:SE:LP:AF:ID 0.0113547:0.0199902:0.244105:0.00165098:rs28863004
1 534583 rs6683466 C G . PASS AF=0.00176341 ES:SE:LP:AF:ID -0.00713949:0.0187023:0.15326:0.00176341:rs6683466
1 565130 rs371431021 G A . PASS AF=0.00155425 ES:SE:LP:AF:ID -0.0338676:0.0206282:0.997268:0.00155425:rs371431021
1 567006 rs565235853 G T . PASS AF=0.0032732 ES:SE:LP:AF:ID -0.0119283:0.0182295:0.289975:0.0032732:rs565235853
1 568800 rs375217967 G A . PASS AF=0.00546677 ES:SE:LP:AF:ID -0.00740214:0.0113419:0.289044:0.00546677:rs375217967
1 601550 rs2491328 G A . PASS AF=0.00112157 ES:SE:LP:AF:ID 0.00637399:0.0240084:0.102025:0.00112157:rs2491328
1 612758 rs4387125 T C . PASS AF=0.00217647 ES:SE:LP:AF:ID -0.0283236:0.0170508:1.01463:0.00217647:rs4387125
1 693731 rs12238997 A G . PASS AF=0.116467 ES:SE:LP:AF:ID 0.000906831:0.00276794:0.128894:0.116467:rs12238997
1 705882 rs72631875 G A . PASS AF=0.0632592 ES:SE:LP:AF:ID -0.00794317:0.00405655:1.29914:0.0632592:rs72631875
1 705942 rs544671234 A T . PASS AF=0.0029098 ES:SE:LP:AF:ID 0.00124731:0.0180853:0.0245613:0.0029098:rs544671234
1 713092 rs4565649 G A . PASS AF=0.00151765 ES:SE:LP:AF:ID -0.00938627:0.0228779:0.166468:0.00151765:rs4565649
1 714277 rs138660747 C A . PASS AF=0.00539739 ES:SE:LP:AF:ID -0.00504755:0.0128318:0.158607:0.00539739:rs138660747
1 715205 rs141090730 C G . PASS AF=0.00154248 ES:SE:LP:AF:ID -0.00114224:0.0225921:0.0178749:0.00154248:rs141090730
1 717474 rs141784362 C T . PASS AF=0.00152157 ES:SE:LP:AF:ID -0.00154655:0.0228756:0.0240639:0.00152157:rs141784362
1 717587 rs144155419 G A . PASS AF=0.0143346 ES:SE:LP:AF:ID 0.00665749:0.00744075:0.430708:0.0143346:rs144155419
1 718624 rs777092529 C G . PASS AF=0.00131503 ES:SE:LP:AF:ID 0.0356364:0.027977:0.693052:0.00131503:rs777092529
1 718625 rs762187552 T G . PASS AF=0.00131503 ES:SE:LP:AF:ID 0.0356364:0.027977:0.693052:0.00131503:rs762187552
1 720583 rs551231909 G A . PASS AF=0.00133987 ES:SE:LP:AF:ID 0.0336642:0.0246101:0.766134:0.00133987:rs551231909
1 720984 rs564367954 T G . PASS AF=0.0019268 ES:SE:LP:AF:ID 0.0381302:0.0247224:0.910116:0.0019268:rs564367954
1 722559 rs150361918 T C . PASS AF=0.00151503 ES:SE:LP:AF:ID 0.00318595:0.0227519:0.0512761:0.00151503:rs150361918
1 722603 rs138029171 T C . PASS AF=0.00132157 ES:SE:LP:AF:ID 0.027078:0.0247717:0.561695:0.00132157:rs138029171
1 722670 rs116030099 T C . PASS AF=0.0920042 ES:SE:LP:AF:ID 0.00188576:0.0033768:0.239171:0.0920042:rs116030099
1 722980 rs114222710 C T . PASS AF=0.00150588 ES:SE:LP:AF:ID 0.00198327:0.0229487:0.0309892:0.00150588:rs114222710
1 723918 rs144434834 G A . PASS AF=0.00146797 ES:SE:LP:AF:ID -0.00505648:0.0232434:0.082083:0.00146797:rs144434834
1 724849 rs12126395 C A . PASS AF=0.0113222 ES:SE:LP:AF:ID 0.00187556:0.00804775:0.0884594:0.0113222:rs12126395
1 725060 rs865924913 A T . PASS AF=0.0191918 ES:SE:LP:AF:ID 0.00143385:0.00644621:0.0840849:0.0191918:rs865924913
1 725401 rs553642122 C T . PASS AF=0.00824577 ES:SE:LP:AF:ID 0.00718524:0.0107379:0.298086:0.00824577:rs553642122
1 730087 rs148120343 T C . PASS AF=0.0552928 ES:SE:LP:AF:ID 0.00081714:0.0038541:0.0798281:0.0552928:rs148120343
1 731048 rs548444285 C T . PASS AF=0.00147059 ES:SE:LP:AF:ID -0.00376968:0.0233717:0.0595518:0.00147059:rs548444285
1 731453 rs186002080 G A . PASS AF=0.0113843 ES:SE:LP:AF:ID 0.00487301:0.00881204:0.236371:0.0113843:rs186002080
1 731718 rs58276399 T C . PASS AF=0.121258 ES:SE:LP:AF:ID 0.000442871:0.0026255:0.062458:0.121258:rs58276399
1 732120 rs114572157 T C . PASS AF=0.00158824 ES:SE:LP:AF:ID 0.00370861:0.0222313:0.061724:0.00158824:rs114572157
1 732801 rs144022023 A G . PASS AF=0.00151634 ES:SE:LP:AF:ID -0.00821051:0.0228274:0.143218:0.00151634:rs144022023
1 732989 rs369030935 C T . PASS AF=0.0256027 ES:SE:LP:AF:ID 0.00246054:0.00637778:0.155122:0.0256027:rs369030935
1 733013 rs4951860 T C . PASS AF=0.00285359 ES:SE:LP:AF:ID 0.0186517:0.0180312:0.521513:0.00285359:rs4951860
1 733819 rs187923271 A G . PASS AF=0.00366536 ES:SE:LP:AF:ID -0.0159901:0.0177458:0.434678:0.00366536:rs187923271
1 734349 rs141242758 T C . PASS AF=0.121124 ES:SE:LP:AF:ID 0.00033008:0.00262713:0.0457503:0.121124:rs141242758
1 734383 rs144952147 G A . PASS AF=0.0015281 ES:SE:LP:AF:ID 0.00635208:0.0226188:0.108552:0.0015281:rs144952147