Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST006586,TotalVariants=11684850,VariantsNotRead=0,HarmonisedVariants=11684850,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=382500.0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-26T21:59:22.146995",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586_data.vcf.gz; Date=Sat Oct 26 22:18:10 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006586/ebi-a-GCST006586.vcf.gz; Date=Sun May 10 11:16:35 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sat Oct 26 22:42:34 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006586/EBI-a-GCST006586.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sat Oct 26 22:43:55 2019
Total time elapsed: 1.0m:20.98s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9533,
    "inflation_factor": 1.1653,
    "mean_EFFECT": -4.1639e-06,
    "n": "-Inf",
    "n_snps": 11684850,
    "n_clumped_hits": 38,
    "n_p_sig": 1675,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 518145,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 64 0 11656289 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 11667950 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.632741e+00 5.759831e+00 1.0000000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▃▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.892424e+07 5.624972e+07 828.0000000 3.270011e+07 6.961637e+07 1.145811e+08 2.492283e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -4.200000e-06 1.131080e-02 -0.1295420 -3.220800e-03 -1.760000e-05 3.176200e-03 3.839540e-01 ▁▇▁▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 8.124100e-03 7.566300e-03 0.0016538 2.112900e-03 4.494400e-03 1.254230e-02 4.914880e-02 ▇▂▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.750860e-01 2.952425e-01 0.0000000 2.133138e-01 4.665530e-01 7.309388e-01 1.000000e+00 ▇▇▆▆▆
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.750855e-01 2.952427e-01 0.0000000 2.133128e-01 4.665526e-01 7.309375e-01 9.999998e-01 ▇▇▆▆▆
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 1.697883e-01 2.458976e-01 0.0010000 4.878400e-03 3.871630e-02 2.465700e-01 9.989990e-01 ▇▁▁▁▁
numeric AF_reference 518145 0.9555925 NA NA NA NA NA NA NA 1.770107e-01 2.405649e-01 0.0000000 3.394600e-03 6.010380e-02 2.663740e-01 1.000000e+00 ▇▂▁▁▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 13169 rs1436530583 A G -0.0058613 0.0226964 0.7962151 0.7962148 0.9985420 NA NA
1 15850 rs575961614 G A 0.0005526 0.0082323 0.9464860 0.9464862 0.0126043 0.0005990 NA
1 55326 rs3107975 T C 0.0138664 0.0164503 0.3992685 0.3992693 0.0024628 0.0459265 NA
1 55389 rs1190986229 T C 0.0060919 0.0163360 0.7092119 0.7092112 0.0037647 NA NA
1 74356 rs1374516807 T C -0.0531140 0.0222333 0.0168978 0.0168971 0.9986180 NA NA
1 82103 rs2020400 T C 0.0013912 0.0041094 0.7349537 0.7349526 0.9424290 NA NA
1 86028 rs114608975 T C -0.0003634 0.0046830 0.9381401 0.9381400 0.0423959 0.0277556 NA
1 91311 rs1354585492 T C 0.0031813 0.0234575 0.8921229 0.8921229 0.9987490 NA NA
1 121759 rs975013924 C A -0.0090759 0.0116137 0.4345212 0.4345194 0.0059176 NA NA
1 123130 rs1235743598 T C 0.0164346 0.0179126 0.3588847 0.3588868 0.9977020 NA NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51223637 rs375798137 G A -0.0023509 0.0037865 0.5346801 0.5346798 0.0540039 0.0788738 NA
22 51226692 rs150189434 G A 0.0106743 0.0229291 0.6415463 0.6415483 0.0013634 0.0155751 NA
22 51227766 rs186062720 T C -0.0102087 0.0215646 0.6359266 0.6359272 0.0018954 0.0005990 NA
22 51229805 rs9616985 T C 0.0032316 0.0032122 0.3143953 0.3143936 0.0734549 0.0730831 NA
22 51230673 rs555680442 G C -0.0007524 0.0220637 0.9727981 0.9727981 0.0016196 0.0017971 NA
22 51231424 rs539541647 A G -0.0101306 0.0259226 0.6959451 0.6959437 0.0014902 0.0011981 NA
22 51232488 rs376461333 A G -0.0025878 0.0075624 0.7322055 0.7322051 0.0123739 NA NA
22 51234033 rs764597437 C T -0.0078950 0.0278643 0.7769177 0.7769171 0.0011464 NA NA
22 51237063 rs3896457 T C -0.0009278 0.0019643 0.6366856 0.6366841 0.2968430 0.2050720 NA
22 51239586 rs535432390 T G 0.0351125 0.0177109 0.0474198 0.0474193 0.0032797 0.0001997 NA

bcf preview

1   13169   rs1436530583    A   G   .   PASS    AF=0.998542 ES:SE:LP:AF:ID  -0.00586132:0.0226964:0.0989696:0.998542:rs1436530583
1   15850   rs575961614 G   A   .   PASS    AF=0.0126043    ES:SE:LP:AF:ID  0.000552552:0.0082323:0.0238858:0.0126043:rs575961614
1   55326   rs3107975   T   C   .   PASS    AF=0.00246275   ES:SE:LP:AF:ID  0.0138664:0.0164503:0.398735:0.00246275:rs3107975
1   55389   rs1190986229    T   C   .   PASS    AF=0.00376471   ES:SE:LP:AF:ID  0.00609195:0.016336:0.149224:0.00376471:rs1190986229
1   74356   rs1374516807    T   C   .   PASS    AF=0.998618 ES:SE:LP:AF:ID  -0.053114:0.0222333:1.77217:0.998618:rs1374516807
1   82103   rs2020400   T   C   .   PASS    AF=0.942429 ES:SE:LP:AF:ID  0.00139123:0.00410944:0.13374:0.942429:rs2020400
1   86028   rs114608975 T   C   .   PASS    AF=0.0423959    ES:SE:LP:AF:ID  -0.000363436:0.00468298:0.0277323:0.0423959:rs114608975
1   91311   rs1354585492    T   C   .   PASS    AF=0.998749 ES:SE:LP:AF:ID  0.00318127:0.0234575:0.0495753:0.998749:rs1354585492
1   121759  rs975013924 C   A   .   PASS    AF=0.00591765   ES:SE:LP:AF:ID  -0.00907589:0.0116137:0.361989:0.00591765:rs975013924
1   123130  rs1235743598    T   C   .   PASS    AF=0.997702 ES:SE:LP:AF:ID  0.0164346:0.0179126:0.445045:0.997702:rs1235743598
1   174747  rs1399732465    C   T   .   PASS    AF=0.0114147    ES:SE:LP:AF:ID  -0.00294248:0.00823842:0.142084:0.0114147:rs1399732465
1   234313  rs8179466   C   T   .   PASS    AF=0.0260356    ES:SE:LP:AF:ID  0.0102588:0.00567661:1.1504:0.0260356:rs8179466
1   526736  rs28863004  C   G   .   PASS    AF=0.00165098   ES:SE:LP:AF:ID  0.0113547:0.0199902:0.244105:0.00165098:rs28863004
1   534583  rs6683466   C   G   .   PASS    AF=0.00176341   ES:SE:LP:AF:ID  -0.00713949:0.0187023:0.15326:0.00176341:rs6683466
1   565130  rs371431021 G   A   .   PASS    AF=0.00155425   ES:SE:LP:AF:ID  -0.0338676:0.0206282:0.997268:0.00155425:rs371431021
1   567006  rs565235853 G   T   .   PASS    AF=0.0032732    ES:SE:LP:AF:ID  -0.0119283:0.0182295:0.289975:0.0032732:rs565235853
1   568800  rs375217967 G   A   .   PASS    AF=0.00546677   ES:SE:LP:AF:ID  -0.00740214:0.0113419:0.289044:0.00546677:rs375217967
1   601550  rs2491328   G   A   .   PASS    AF=0.00112157   ES:SE:LP:AF:ID  0.00637399:0.0240084:0.102025:0.00112157:rs2491328
1   612758  rs4387125   T   C   .   PASS    AF=0.00217647   ES:SE:LP:AF:ID  -0.0283236:0.0170508:1.01463:0.00217647:rs4387125
1   693731  rs12238997  A   G   .   PASS    AF=0.116467 ES:SE:LP:AF:ID  0.000906831:0.00276794:0.128894:0.116467:rs12238997
1   705882  rs72631875  G   A   .   PASS    AF=0.0632592    ES:SE:LP:AF:ID  -0.00794317:0.00405655:1.29914:0.0632592:rs72631875
1   705942  rs544671234 A   T   .   PASS    AF=0.0029098    ES:SE:LP:AF:ID  0.00124731:0.0180853:0.0245613:0.0029098:rs544671234
1   713092  rs4565649   G   A   .   PASS    AF=0.00151765   ES:SE:LP:AF:ID  -0.00938627:0.0228779:0.166468:0.00151765:rs4565649
1   714277  rs138660747 C   A   .   PASS    AF=0.00539739   ES:SE:LP:AF:ID  -0.00504755:0.0128318:0.158607:0.00539739:rs138660747
1   715205  rs141090730 C   G   .   PASS    AF=0.00154248   ES:SE:LP:AF:ID  -0.00114224:0.0225921:0.0178749:0.00154248:rs141090730
1   717474  rs141784362 C   T   .   PASS    AF=0.00152157   ES:SE:LP:AF:ID  -0.00154655:0.0228756:0.0240639:0.00152157:rs141784362
1   717587  rs144155419 G   A   .   PASS    AF=0.0143346    ES:SE:LP:AF:ID  0.00665749:0.00744075:0.430708:0.0143346:rs144155419
1   718624  rs777092529 C   G   .   PASS    AF=0.00131503   ES:SE:LP:AF:ID  0.0356364:0.027977:0.693052:0.00131503:rs777092529
1   718625  rs762187552 T   G   .   PASS    AF=0.00131503   ES:SE:LP:AF:ID  0.0356364:0.027977:0.693052:0.00131503:rs762187552
1   720583  rs551231909 G   A   .   PASS    AF=0.00133987   ES:SE:LP:AF:ID  0.0336642:0.0246101:0.766134:0.00133987:rs551231909
1   720984  rs564367954 T   G   .   PASS    AF=0.0019268    ES:SE:LP:AF:ID  0.0381302:0.0247224:0.910116:0.0019268:rs564367954
1   722559  rs150361918 T   C   .   PASS    AF=0.00151503   ES:SE:LP:AF:ID  0.00318595:0.0227519:0.0512761:0.00151503:rs150361918
1   722603  rs138029171 T   C   .   PASS    AF=0.00132157   ES:SE:LP:AF:ID  0.027078:0.0247717:0.561695:0.00132157:rs138029171
1   722670  rs116030099 T   C   .   PASS    AF=0.0920042    ES:SE:LP:AF:ID  0.00188576:0.0033768:0.239171:0.0920042:rs116030099
1   722980  rs114222710 C   T   .   PASS    AF=0.00150588   ES:SE:LP:AF:ID  0.00198327:0.0229487:0.0309892:0.00150588:rs114222710
1   723918  rs144434834 G   A   .   PASS    AF=0.00146797   ES:SE:LP:AF:ID  -0.00505648:0.0232434:0.082083:0.00146797:rs144434834
1   724849  rs12126395  C   A   .   PASS    AF=0.0113222    ES:SE:LP:AF:ID  0.00187556:0.00804775:0.0884594:0.0113222:rs12126395
1   725060  rs865924913 A   T   .   PASS    AF=0.0191918    ES:SE:LP:AF:ID  0.00143385:0.00644621:0.0840849:0.0191918:rs865924913
1   725401  rs553642122 C   T   .   PASS    AF=0.00824577   ES:SE:LP:AF:ID  0.00718524:0.0107379:0.298086:0.00824577:rs553642122
1   730087  rs148120343 T   C   .   PASS    AF=0.0552928    ES:SE:LP:AF:ID  0.00081714:0.0038541:0.0798281:0.0552928:rs148120343
1   731048  rs548444285 C   T   .   PASS    AF=0.00147059   ES:SE:LP:AF:ID  -0.00376968:0.0233717:0.0595518:0.00147059:rs548444285
1   731453  rs186002080 G   A   .   PASS    AF=0.0113843    ES:SE:LP:AF:ID  0.00487301:0.00881204:0.236371:0.0113843:rs186002080
1   731718  rs58276399  T   C   .   PASS    AF=0.121258 ES:SE:LP:AF:ID  0.000442871:0.0026255:0.062458:0.121258:rs58276399
1   732120  rs114572157 T   C   .   PASS    AF=0.00158824   ES:SE:LP:AF:ID  0.00370861:0.0222313:0.061724:0.00158824:rs114572157
1   732801  rs144022023 A   G   .   PASS    AF=0.00151634   ES:SE:LP:AF:ID  -0.00821051:0.0228274:0.143218:0.00151634:rs144022023
1   732989  rs369030935 C   T   .   PASS    AF=0.0256027    ES:SE:LP:AF:ID  0.00246054:0.00637778:0.155122:0.0256027:rs369030935
1   733013  rs4951860   T   C   .   PASS    AF=0.00285359   ES:SE:LP:AF:ID  0.0186517:0.0180312:0.521513:0.00285359:rs4951860
1   733819  rs187923271 A   G   .   PASS    AF=0.00366536   ES:SE:LP:AF:ID  -0.0159901:0.0177458:0.434678:0.00366536:rs187923271
1   734349  rs141242758 T   C   .   PASS    AF=0.121124 ES:SE:LP:AF:ID  0.00033008:0.00262713:0.0457503:0.121124:rs141242758
1   734383  rs144952147 G   A   .   PASS    AF=0.0015281    ES:SE:LP:AF:ID  0.00635208:0.0226188:0.108552:0.0015281:rs144952147