{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST006488,TotalVariants=12334883,VariantsNotRead=0,HarmonisedVariants=12334883,VariantsNotHarmonised=0,SwitchedAlleles=1,TotalControls=40776.0,TotalCases=12863.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:46:26.399375",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/EBI-a-GCST006488_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/EBI-a-GCST006488.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/EBI-a-GCST006488_data.vcf.gz; Date=Sat Oct 26 22:07:26 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006488/ebi-a-GCST006488.vcf.gz; Date=Sat May 9 14:11:08 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/EBI-a-GCST006488.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:32:13 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006488/EBI-a-GCST006488.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:33:42 2019
Total time elapsed: 1.0m:28.63s
{
"af_correlation": 0.9508,
"inflation_factor": 1.0327,
"mean_EFFECT": 0.0001,
"n": "-Inf",
"n_snps": 12334883,
"n_clumped_hits": 1,
"n_p_sig": 3,
"n_mono": 0,
"n_ns": 1152127,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 407227,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 58 | 0 | 12313789 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 84 | 0 | 53923 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 103 | 0 | 30755 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 12314500 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.614283e+00 | 5.745058e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▃▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.896320e+07 | 5.625196e+07 | 302.0000000 | 3.266838e+07 | 6.964509e+07 | 1.145212e+08 | 2.492383e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.332000e-04 | 7.844720e-02 | -0.8850640 | -2.134660e-02 | -6.180000e-05 | 2.114640e-02 | 1.123890e+00 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.566300e-02 | 5.537170e-02 | 0.0121516 | 1.695440e-02 | 2.895710e-02 | 7.392770e-02 | 8.183050e-01 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.950645e-01 | 2.898021e-01 | 0.0000000 | 2.433548e-01 | 4.930739e-01 | 7.457375e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.950645e-01 | 2.898021e-01 | 0.0000000 | 2.433543e-01 | 4.930744e-01 | 7.457367e-01 | 9.999999e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.021023e-01 | 2.571439e-01 | 0.0001000 | 1.046760e-02 | 7.496170e-02 | 3.187150e-01 | 9.997000e-01 | ▇▂▁▁▁ |
numeric | AF_reference | 407227 | 0.9669311 | NA | NA | NA | NA | NA | NA | NA | 2.063575e-01 | 2.488954e-01 | 0.0000000 | 8.985600e-03 | 9.824280e-02 | 3.260780e-01 | 1.000000e+00 | ▇▂▁▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 636285 | rs545945172 | T | C | 0.0026586 | 0.0267705 | 0.9208939 | 0.9208921 | 0.0992885 | 0.0956470 | NA |
1 | 649192 | rs201942322 | A | T | -0.0016872 | 0.0245566 | 0.9452211 | 0.9452248 | 0.1187560 | 0.1369810 | NA |
1 | 662622 | rs61769339 | G | A | -0.0061587 | 0.0248031 | 0.8038900 | 0.8038982 | 0.1104050 | 0.1475640 | NA |
1 | 692794 | rs530212009 | CA | C | 0.0087326 | 0.0249898 | 0.7267600 | 0.7267553 | 0.1100400 | 0.1894970 | NA |
1 | 693731 | rs12238997 | A | G | -0.0032016 | 0.0248329 | 0.8974110 | 0.8974170 | 0.1110400 | 0.1417730 | NA |
1 | 693823 | rs61769351 | G | C | -0.0026634 | 0.0248133 | 0.9145160 | 0.9145215 | 0.1112540 | 0.1491610 | NA |
1 | 707522 | rs371890604 | G | C | -0.0065350 | 0.0255666 | 0.7982601 | 0.7982553 | 0.0989854 | 0.1293930 | NA |
1 | 711310 | rs200531508 | G | A | -0.0619112 | 0.0375357 | 0.0990672 | 0.0990667 | 0.0468910 | 0.0736821 | NA |
1 | 727841 | rs116587930 | G | A | 0.0259669 | 0.0316565 | 0.4120624 | 0.4120618 | 0.0570574 | 0.0127796 | NA |
1 | 729679 | rs4951859 | C | G | -0.0090671 | 0.0221096 | 0.6817388 | 0.6817338 | 0.8498070 | 0.6399760 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51228888 | rs201882178 | T | G | 0.0210959 | 0.0165433 | 0.2022418 | 0.2022409 | 0.3579800 | 0.2929310 | NA |
22 | 51228910 | rs145146472 | G | A | 0.0143712 | 0.0172212 | 0.4039969 | 0.4039957 | 0.3031780 | 0.2276360 | NA |
22 | 51229455 | rs534865882 | G | C | 0.0269719 | 0.0337720 | 0.4244935 | 0.4244952 | 0.0540839 | 0.0483227 | NA |
22 | 51229656 | rs564838851 | G | A | -0.0297192 | 0.0295401 | 0.3143822 | 0.3143853 | 0.0730354 | 0.0774760 | NA |
22 | 51229717 | rs200078515 | A | T | 0.0144199 | 0.0173388 | 0.4056038 | 0.4056037 | 0.2994930 | 0.2294330 | NA |
22 | 51229805 | rs9616985 | T | C | -0.0279206 | 0.0294347 | 0.3428412 | 0.3428441 | 0.0717178 | 0.0730831 | NA |
22 | 51231220 | rs368226325 | A | G | 0.0370823 | 0.0337693 | 0.2721579 | 0.2721578 | 0.0540943 | 0.0601038 | NA |
22 | 51232581 | rs200771213 | T | C | 0.0107233 | 0.0173420 | 0.5363534 | 0.5363494 | 0.3029190 | 0.2270370 | NA |
22 | 51236013 | rs200507571 | A | AT | 0.0361637 | 0.0183200 | 0.0483816 | 0.0483816 | 0.2526090 | 0.1487620 | NA |
22 | 51237712 | rs370652263 | G | A | 0.0253221 | 0.0334989 | 0.4497032 | 0.4497041 | 0.0560945 | 0.0690895 | NA |
1 636285 rs545945172 T C . PASS AF=0.0992885 ES:SE:LP:AF:ID 0.00265858:0.0267705:0.0357904:0.0992885:rs545945172
1 649192 rs201942322 A T . PASS AF=0.118756 ES:SE:LP:AF:ID -0.00168715:0.0245566:0.0244666:0.118756:rs201942322
1 662622 rs61769339 G A . PASS AF=0.110405 ES:SE:LP:AF:ID -0.00615874:0.0248031:0.0948034:0.110405:rs61769339
1 692794 rs530212009 CA C . PASS AF=0.11004 ES:SE:LP:AF:ID 0.00873256:0.0249898:0.138609:0.11004:rs530212009
1 693731 rs12238997 A G . PASS AF=0.11104 ES:SE:LP:AF:ID -0.00320158:0.0248329:0.0470086:0.11104:rs12238997
1 693823 rs61769351 G C . PASS AF=0.111254 ES:SE:LP:AF:ID -0.00266339:0.0248133:0.0388087:0.111254:rs61769351
1 707522 rs371890604 G C . PASS AF=0.0989854 ES:SE:LP:AF:ID -0.00653497:0.0255666:0.0978556:0.0989854:rs371890604
1 711310 rs200531508 G A . PASS AF=0.046891 ES:SE:LP:AF:ID -0.0619112:0.0375357:1.00407:0.046891:rs200531508
1 727841 rs116587930 G A . PASS AF=0.0570574 ES:SE:LP:AF:ID 0.0259669:0.0316565:0.385037:0.0570574:rs116587930
1 729679 rs4951859 C G . PASS AF=0.849807 ES:SE:LP:AF:ID -0.00906711:0.0221096:0.166382:0.849807:rs4951859
1 730087 rs148120343 T C . PASS AF=0.057135 ES:SE:LP:AF:ID 0.0291491:0.0320143:0.440624:0.057135:rs148120343
1 731718 rs58276399 T C . PASS AF=0.1219 ES:SE:LP:AF:ID -0.00203978:0.0233833:0.0312916:0.1219:rs58276399
1 732032 rs61770163 A C . PASS AF=0.121029 ES:SE:LP:AF:ID -0.00437206:0.023403:0.0696603:0.121029:rs61770163
1 734349 rs141242758 T C . PASS AF=0.120888 ES:SE:LP:AF:ID -0.00237546:0.0234258:0.0365772:0.120888:rs141242758
1 735985 rs12405651 G A . PASS AF=0.0313526 ES:SE:LP:AF:ID 0.0439665:0.0462715:0.465952:0.0313526:rs12405651
1 736289 rs79010578 T A . PASS AF=0.126902 ES:SE:LP:AF:ID 0.00623551:0.0235923:0.101525:0.126902:rs79010578
1 736736 rs10454457 A G . PASS AF=0.0317702 ES:SE:LP:AF:ID 0.0696489:0.0455644:0.898363:0.0317702:rs10454457
1 740285 rs193160839 G A . PASS AF=0.0259252 ES:SE:LP:AF:ID 0.0640398:0.051203:0.675629:0.0259252:rs193160839
1 740578 rs7521650 G C . PASS AF=0.00119743 ES:SE:LP:AF:ID -0.0903846:0.224851:0.1626:0.00119743:rs7521650
1 745642 rs200097270 AC A . PASS AF=0.0298549 ES:SE:LP:AF:ID 0.0481331:0.0470187:0.514314:0.0298549:rs200097270
1 746211 rs201075335 A AG . PASS AF=0.0350586 ES:SE:LP:AF:ID 0.0565138:0.0422851:0.741391:0.0350586:rs201075335
1 746727 rs144595511 G A . PASS AF=0.0299841 ES:SE:LP:AF:ID 0.0472249:0.0468057:0.504464:0.0299841:rs144595511
1 747040 rs531539579 G T . PASS AF=0.00107045 ES:SE:LP:AF:ID -0.148386:0.235384:0.277011:0.00107045:rs531539579
1 747753 rs200313238 TGC T . PASS AF=0.0296914 ES:SE:LP:AF:ID 0.0481425:0.0470947:0.51334:0.0296914:rs200313238
1 749963 rs529266287 T TAA . PASS AF=0.867032 ES:SE:LP:AF:ID 6.48378e-05:0.0219578:0.00102441:0.867032:rs529266287
1 750230 rs190826124 G C . PASS AF=0.00144191 ES:SE:LP:AF:ID -0.073336:0.207557:0.140356:0.00144191:rs190826124
1 751343 rs28544273 T A . PASS AF=0.125682 ES:SE:LP:AF:ID -0.00506922:0.0218846:0.0878726:0.125682:rs28544273
1 751488 rs200141114 G GA . PASS AF=0.144444 ES:SE:LP:AF:ID -0.0139109:0.0215755:0.284757:0.144444:rs200141114
1 751756 rs28527770 T C . PASS AF=0.12583 ES:SE:LP:AF:ID -0.00558393:0.0218504:0.097836:0.12583:rs28527770
1 752307 rs201062411 AT A . PASS AF=0.0319162 ES:SE:LP:AF:ID 0.0551262:0.0424897:0.711096:0.0319162:rs201062411
1 752478 rs146277091 G A . PASS AF=0.0324255 ES:SE:LP:AF:ID 0.0569802:0.0420401:0.756223:0.0324255:rs146277091
1 752566 rs3094315 G A . PASS AF=0.842711 ES:SE:LP:AF:ID -0.00285879:0.0202599:0.0516917:0.842711:rs3094315
1 752593 rs372531941 T G . PASS AF=0.0299511 ES:SE:LP:AF:ID 0.0572848:0.044879:0.69507:0.0299511:rs372531941
1 752617 rs149886465 C A . PASS AF=0.0313863 ES:SE:LP:AF:ID 0.0633655:0.0430377:0.850987:0.0313863:rs149886465
1 752721 rs3131972 A G . PASS AF=0.84089 ES:SE:LP:AF:ID -0.00526887:0.0200818:0.100707:0.84089:rs3131972
1 752894 rs3131971 T C . PASS AF=0.841383 ES:SE:LP:AF:ID -0.00554569:0.0201257:0.106299:0.841383:rs3131971
1 753405 rs3115860 C A . PASS AF=0.872511 ES:SE:LP:AF:ID 0.00754661:0.0217219:0.137703:0.872511:rs3115860
1 753425 rs3131970 T C . PASS AF=0.872505 ES:SE:LP:AF:ID 0.0074653:0.0217217:0.13603:0.872505:rs3131970
1 753474 rs2073814 C G . PASS AF=0.839557 ES:SE:LP:AF:ID -0.00204267:0.020175:0.0365163:0.839557:rs2073814
1 753541 rs2073813 G A . PASS AF=0.126248 ES:SE:LP:AF:ID -0.00534907:0.0217632:0.0937469:0.126248:rs2073813
1 754063 rs12184312 G T . PASS AF=0.0319213 ES:SE:LP:AF:ID 0.054793:0.0428949:0.695794:0.0319213:rs12184312
1 754105 rs12184325 C T . PASS AF=0.036205 ES:SE:LP:AF:ID 0.0549387:0.0391404:0.794717:0.036205:rs12184325
1 754121 rs12184335 T G . PASS AF=0.0293682 ES:SE:LP:AF:ID 0.0422172:0.0451115:0.456733:0.0293682:rs12184335
1 754163 rs12184336 T C . PASS AF=0.0254757 ES:SE:LP:AF:ID 0.0704632:0.051287:0.770902:0.0254757:rs12184336
1 754182 rs3131969 A G . PASS AF=0.871596 ES:SE:LP:AF:ID 0.0048104:0.0215896:0.0842399:0.871596:rs3131969
1 754192 rs3131968 A G . PASS AF=0.871577 ES:SE:LP:AF:ID 0.00498927:0.0215889:0.0876536:0.871577:rs3131968
1 754211 rs12184313 G A . PASS AF=0.0278996 ES:SE:LP:AF:ID 0.0527513:0.0477031:0.570566:0.0278996:rs12184313
1 754334 rs3131967 T C . PASS AF=0.871918 ES:SE:LP:AF:ID 0.0055349:0.0216085:0.0980847:0.871918:rs3131967
1 754433 rs150578204 G A . PASS AF=0.00531385 ES:SE:LP:AF:ID -0.0788406:0.107062:0.335839:0.00531385:rs150578204
1 754458 rs142682604 G T . PASS AF=0.0052567 ES:SE:LP:AF:ID -0.0742218:0.107237:0.310821:0.0052567:rs142682604