Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST006367,TotalVariants=6377725,VariantsNotRead=0,HarmonisedVariants=6377725,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=8107.0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-26T21:54:59.974081",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/EBI-a-GCST006367_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/EBI-a-GCST006367.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/EBI-a-GCST006367_data.vcf.gz; Date=Sat Oct 26 22:08:29 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST006367/ebi-a-GCST006367.vcf.gz; Date=Sun May 10 12:40:15 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/EBI-a-GCST006367.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sat Oct 26 22:31:41 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST006367/EBI-a-GCST006367.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sat Oct 26 22:32:22 2019
Total time elapsed: 41.63s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9431,
    "inflation_factor": 1.0345,
    "mean_EFFECT": -0.0027,
    "n": "-Inf",
    "n_snps": 6377725,
    "n_clumped_hits": 15,
    "n_p_sig": 237,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 0,
    "n_miss_AF_reference": 91914,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 58 0 6364650 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 6364653 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.575533e+00 5.710937e+00 1.0000 4.000000e+00 8.000000e+00 1.300000e+01 2.200000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.913399e+07 5.626689e+07 828.0000 3.266566e+07 6.984954e+07 1.148250e+08 2.492165e+08 ▇▆▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -2.712200e-03 1.132078e+00 -22.2544 -5.377000e-01 -6.000000e-04 5.333000e-01 1.963600e+01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 9.406358e-01 6.191833e-01 0.5053 5.787000e-01 7.054000e-01 1.026400e+00 7.377900e+00 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.945975e-01 2.895922e-01 0.0000 2.426001e-01 4.927005e-01 7.449000e-01 1.000000e+00 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.945975e-01 2.895921e-01 0.0000 2.425623e-01 4.927446e-01 7.449423e-01 9.999741e-01 ▇▇▇▇▇
numeric AF 0 1.0000000 NA NA NA NA NA NA NA 3.119126e-01 2.471682e-01 0.0101 1.051000e-01 2.416000e-01 4.758000e-01 9.897000e-01 ▇▅▃▂▁
numeric AF_reference 91914 0.9855587 NA NA NA NA NA NA NA 2.960135e-01 2.436918e-01 0.0000 9.604630e-02 2.262380e-01 4.536740e-01 1.000000e+00 ▇▅▂▂▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 751756 rs143225517 T C 0.8556 0.8916 0.3372003 0.3372449 0.1390 0.242212 NA
1 752566 rs3094315 G A -0.7512 0.7645 0.3257999 0.3258029 0.8413 0.718251 NA
1 752894 rs3131971 T C -0.8819 0.9030 0.3287002 0.3287507 0.8308 0.753195 NA
1 753405 rs3115860 C A -0.8398 0.8600 0.3288001 0.3288110 0.8422 0.751797 NA
1 754503 rs3115859 G A -1.5520 1.1846 0.1900999 0.1901462 0.7306 0.663938 NA
1 755775 rs3131965 A G -1.0044 0.9226 0.2763001 0.2763028 0.7998 NA NA
1 755890 rs3115858 A T -0.9069 0.9030 0.3151998 0.3152249 0.8549 0.751398 NA
1 756604 rs3131962 A G -1.3622 1.1043 0.2174002 0.2173738 0.8694 0.748003 NA
1 757734 rs4951929 C T -0.9298 0.9117 0.3078003 0.3077982 0.8636 0.748203 NA
1 757936 rs4951862 C A -0.9318 0.9109 0.3063000 0.3063342 0.8633 0.748802 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51165390 rs76268556 C T -1.2274 0.9408 0.1919999 0.1920174 0.1308 0.0515176 NA
22 51165664 rs8137951 G A 0.3772 0.5473 0.4906999 0.4906965 0.4745 0.4063500 NA
22 51169045 rs8140772 C T -1.1411 0.8211 0.1647002 0.1646136 0.1484 0.0632987 NA
22 51171497 rs2301584 G A 0.7068 0.8542 0.4079998 0.4079872 0.2340 0.2533950 NA
22 51171667 rs41281537 G A -1.1119 0.8004 0.1647999 0.1647779 0.1504 0.0577077 NA
22 51171693 rs756638 G A -0.9562 0.6094 0.1166001 0.1166283 0.2466 0.3049120 NA
22 51172460 rs5770824 T C -1.2962 0.8079 0.1086000 0.1086245 0.1587 0.0684904 NA
22 51175626 rs3810648 A G 0.3058 1.0487 0.7706000 0.7705931 0.0720 0.1084270 NA
22 51178090 rs2285395 G A -0.2583 1.0563 0.8068000 0.8068182 0.0718 0.0666933 NA
22 51178607 rs6010067 G C -1.9723 1.0673 0.0646100 0.0646119 0.1882 0.0814696 NA

bcf preview

1   751756  rs28527770  T   C   .   PASS    AF=0.139    ES:SE:LP:AF:ID  0.8556:0.8916:0.472112:0.139:rs28527770
1   752566  rs3094315   G   A   .   PASS    AF=0.8413   ES:SE:LP:AF:ID  -0.7512:0.7645:0.487049:0.8413:rs3094315
1   752894  rs3131971   T   C   .   PASS    AF=0.8308   ES:SE:LP:AF:ID  -0.8819:0.903:0.4832:0.8308:rs3131971
1   753405  rs3115860   C   A   .   PASS    AF=0.8422   ES:SE:LP:AF:ID  -0.8398:0.86:0.483068:0.8422:rs3115860
1   754503  rs3115859   G   A   .   PASS    AF=0.7306   ES:SE:LP:AF:ID  -1.552:1.1846:0.721018:0.7306:rs3115859
1   755775  rs3131965   A   G   .   PASS    AF=0.7998   ES:SE:LP:AF:ID  -1.0044:0.9226:0.558619:0.7998:rs3131965
1   755890  rs3115858   A   T   .   PASS    AF=0.8549   ES:SE:LP:AF:ID  -0.9069:0.903:0.501414:0.8549:rs3115858
1   756604  rs3131962   A   G   .   PASS    AF=0.8694   ES:SE:LP:AF:ID  -1.3622:1.1043:0.66274:0.8694:rs3131962
1   757734  rs4951929   C   T   .   PASS    AF=0.8636   ES:SE:LP:AF:ID  -0.9298:0.9117:0.511731:0.8636:rs4951929
1   757936  rs4951862   C   A   .   PASS    AF=0.8633   ES:SE:LP:AF:ID  -0.9318:0.9109:0.513853:0.8633:rs4951862
1   758144  rs3131956   A   G   .   PASS    AF=0.8573   ES:SE:LP:AF:ID  -0.9049:0.8815:0.51627:0.8573:rs3131956
1   758626  rs3131954   C   T   .   PASS    AF=0.8626   ES:SE:LP:AF:ID  -0.9459:0.9224:0.515415:0.8626:rs3131954
1   759700  rs3115852   T   C   .   PASS    AF=0.8489   ES:SE:LP:AF:ID  -1.5435:1.1664:0.731188:0.8489:rs3115852
1   759837  rs3115851   T   A   .   PASS    AF=0.8977   ES:SE:LP:AF:ID  -1.4021:1.1096:0.68529:0.8977:rs3115851
1   760912  rs1048488   C   T   .   PASS    AF=0.8812   ES:SE:LP:AF:ID  -1.4615:1.1036:0.73189:0.8812:rs1048488
1   761147  rs3115850   T   C   .   PASS    AF=0.9056   ES:SE:LP:AF:ID  -1.6496:1.1478:0.822175:0.9056:rs3115850
1   761752  rs1057213   C   T   .   PASS    AF=0.8795   ES:SE:LP:AF:ID  -1.6165:1.209:0.741842:0.8795:rs1057213
1   768448  rs12562034  G   A   .   PASS    AF=0.3383   ES:SE:LP:AF:ID  1.1069:0.8705:0.691222:0.3383:rs12562034
1   769963  rs7518545   G   A   .   PASS    AF=0.3185   ES:SE:LP:AF:ID  0.5778:0.8859:0.288783:0.3185:rs7518545
1   846078  rs28612348  C   T   .   PASS    AF=0.1429   ES:SE:LP:AF:ID  0.3331:1.141:0.11334:0.1429:rs28612348
1   846808  rs4475691   C   T   .   PASS    AF=0.1774   ES:SE:LP:AF:ID  -0.4814:0.7251:0.295163:0.1774:rs4475691
1   846864  rs950122    G   C   .   PASS    AF=0.1686   ES:SE:LP:AF:ID  -0.4442:0.8649:0.216382:0.1686:rs950122
1   847228  rs3905286   C   T   .   PASS    AF=0.1993   ES:SE:LP:AF:ID  0.3271:0.9882:0.130416:0.1993:rs3905286
1   847491  rs28407778  G   A   .   PASS    AF=0.2069   ES:SE:LP:AF:ID  0.3289:0.9807:0.132356:0.2069:rs28407778
1   888659  rs3748597   T   C   .   PASS    AF=0.9159   ES:SE:LP:AF:ID  1.6454:2.5164:0.289713:0.9159:rs3748597
1   900205  rs4970436   T   C   .   PASS    AF=0.2058   ES:SE:LP:AF:ID  -0.2926:0.8553:0.135311:0.2058:rs4970436
1   900505  rs28705211  G   C   .   PASS    AF=0.203    ES:SE:LP:AF:ID  -0.4637:0.7734:0.260586:0.203:rs28705211
1   913889  rs2340596   G   A   .   PASS    AF=0.6832   ES:SE:LP:AF:ID  0.4692:0.618:0.348916:0.6832:rs2340596
1   914333  rs13302979  C   G   .   PASS    AF=0.705    ES:SE:LP:AF:ID  0.568:0.6759:0.397181:0.705:rs13302979
1   914852  rs13303368  G   C   .   PASS    AF=0.6792   ES:SE:LP:AF:ID  0.4517:0.6119:0.336959:0.6792:rs13303368
1   914940  rs13303033  T   C   .   PASS    AF=0.6721   ES:SE:LP:AF:ID  0.4512:0.6069:0.339799:0.6721:rs13303033
1   916834  rs6694632   G   A   .   PASS    AF=0.7177   ES:SE:LP:AF:ID  0.5404:0.6455:0.395234:0.7177:rs6694632
1   918384  rs13303118  G   T   .   PASS    AF=0.682    ES:SE:LP:AF:ID  0.4309:0.5606:0.354479:0.682:rs13303118
1   918573  rs2341354   A   G   .   PASS    AF=0.7126   ES:SE:LP:AF:ID  0.3906:0.6533:0.259716:0.7126:rs2341354
1   920648  rs6677020   T   C   .   PASS    AF=0.9591   ES:SE:LP:AF:ID  -0.9669:2.6804:0.143694:0.9591:rs6677020
1   920733  rs6677131   T   C   .   PASS    AF=0.9572   ES:SE:LP:AF:ID  -0.9518:2.6545:0.142728:0.9572:rs6677131
1   921570  rs6662128   T   C   .   PASS    AF=0.9624   ES:SE:LP:AF:ID  -0.1878:1.752:0.0387213:0.9624:rs6662128
1   923076  rs6605060   A   G   .   PASS    AF=0.9725   ES:SE:LP:AF:ID  -0.9293:2.297:0.163803:0.9725:rs6605060
1   923459  rs9442609   A   G   .   PASS    AF=0.9652   ES:SE:LP:AF:ID  -0.2242:1.7271:0.0473528:0.9652:rs9442609
1   923749  rs9442610   T   C   .   PASS    AF=0.9528   ES:SE:LP:AF:ID  0.4676:1.8936:0.0942041:0.9528:rs9442610
1   924368  rs35562283  C   T   .   PASS    AF=0.9775   ES:SE:LP:AF:ID  -0.9593:2.3991:0.161655:0.9775:rs35562283
1   924629  rs28622096  A   G   .   PASS    AF=0.9659   ES:SE:LP:AF:ID  -0.2355:1.7087:0.0504148:0.9659:rs28622096
1   924898  rs6665000   C   A   .   PASS    AF=0.9664   ES:SE:LP:AF:ID  -0.9533:1.8083:0.223226:0.9664:rs6665000
1   925684  rs6605061   T   C   .   PASS    AF=0.9406   ES:SE:LP:AF:ID  -1.1985:2.2501:0.225994:0.9406:rs6605061
1   926351  rs6671243   C   T   .   PASS    AF=0.9668   ES:SE:LP:AF:ID  -0.2342:1.6953:0.0505612:0.9668:rs6671243
1   926431  rs4970403   A   T   .   PASS    AF=0.9674   ES:SE:LP:AF:ID  -0.2033:1.718:0.0429677:0.9674:rs4970403
1   926621  rs4970351   A   C   .   PASS    AF=0.966    ES:SE:LP:AF:ID  -0.1898:1.7204:0.0399575:0.966:rs4970351
1   927309  rs2341362   T   C   .   PASS    AF=0.968    ES:SE:LP:AF:ID  -0.9242:1.8177:0.213817:0.968:rs2341362
1   928373  rs79271194  A   G   .   PASS    AF=0.9702   ES:SE:LP:AF:ID  -0.1006:2.0057:0.0177288:0.9702:rs79271194
1   928578  rs28394749  G   A   .   PASS    AF=0.9682   ES:SE:LP:AF:ID  -0.2233:1.6846:0.0483711:0.9682:rs28394749