{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST005903,TotalVariants=7640987,VariantsNotRead=0,HarmonisedVariants=7640987,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=209308.0,TotalCases=8276.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:44:16.167884",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/EBI-a-GCST005903_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/EBI-a-GCST005903.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/EBI-a-GCST005903_data.vcf.gz; Date=Sat Oct 26 21:58:00 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST005903/ebi-a-GCST005903.vcf.gz; Date=Sat May 9 17:55:46 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/EBI-a-GCST005903.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:21:48 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005903/EBI-a-GCST005903.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:22:39 2019
Total time elapsed: 51.08s
{
"af_correlation": 0.9407,
"inflation_factor": 1.063,
"mean_EFFECT": 2.6375e-06,
"n": "-Inf",
"n_snps": 7640987,
"n_clumped_hits": 1,
"n_p_sig": 1,
"n_mono": 0,
"n_ns": 0,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 67823,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 58 | 0 | 7620546 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 7625086 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.647951e+00 | 5.756866e+00 | 1.000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.880604e+07 | 5.641491e+07 | 828.000000 | 3.232435e+07 | 6.937042e+07 | 1.146648e+08 | 2.492235e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.600000e-06 | 1.363000e-03 | -0.014850 | -6.647000e-04 | 3.000000e-07 | 6.632000e-04 | 1.357900e-02 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.170100e-03 | 6.662000e-04 | 0.000578 | 6.444000e-04 | 8.794000e-04 | 1.523200e-03 | 9.019100e-03 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.904710e-01 | 2.911157e-01 | 0.000000 | 2.358685e-01 | 4.867882e-01 | 7.427454e-01 | 9.999998e-01 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.904703e-01 | 2.911162e-01 | 0.000000 | 2.358681e-01 | 4.867868e-01 | 7.427417e-01 | 9.999998e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.524547e-01 | 2.608591e-01 | 0.010000 | 4.042760e-02 | 1.463300e-01 | 3.990610e-01 | 9.899980e-01 | ▇▂▂▁▁ |
numeric | AF_reference | 67823 | 0.9911053 | NA | NA | NA | NA | NA | NA | NA | 2.517517e-01 | 2.524720e-01 | 0.000000 | 4.432910e-02 | 1.615420e-01 | 3.939700e-01 | 1.000000e+00 | ▇▃▂▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15850 | rs575961614 | G | A | -0.0008724 | 0.0028700 | 0.7611320 | 0.7611359 | 0.0212510 | 0.0005990 | NA |
1 | 82103 | rs2020400 | T | C | -0.0038445 | 0.0014332 | 0.0073063 | 0.0073083 | 0.9248990 | NA | NA |
1 | 174747 | rs1399732465 | C | T | -0.0002499 | 0.0028791 | 0.9308271 | 0.9308266 | 0.0257265 | NA | NA |
1 | 234313 | rs8179466 | C | T | -0.0014572 | 0.0019779 | 0.4612857 | 0.4612799 | 0.0747264 | NA | NA |
1 | 546697 | rs12025928 | A | G | -0.0009324 | 0.0014281 | 0.5138425 | 0.5138417 | 0.9133710 | NA | NA |
1 | 568800 | rs375217967 | G | A | -0.0106020 | 0.0039277 | 0.0069518 | 0.0069488 | 0.0168716 | 0.0778754 | NA |
1 | 693731 | rs12238997 | A | G | -0.0004826 | 0.0009646 | 0.6168080 | 0.6168087 | 0.1157600 | 0.1417730 | NA |
1 | 705882 | rs72631875 | G | A | 0.0029974 | 0.0014117 | 0.0337287 | 0.0337324 | 0.0670992 | 0.0315495 | NA |
1 | 717587 | rs144155419 | G | A | -0.0017362 | 0.0025679 | 0.4989649 | 0.4989666 | 0.0158778 | 0.0045926 | NA |
1 | 722670 | rs116030099 | T | C | -0.0007920 | 0.0011745 | 0.5001151 | 0.5001289 | 0.1015830 | 0.0413339 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51218377 | rs2519461 | G | C | 0.0002687 | 0.0011148 | 0.8095525 | 0.8095598 | 0.0736137 | 0.0826677 | NA |
22 | 51219006 | rs28729663 | G | A | 0.0009554 | 0.0008605 | 0.2669070 | 0.2669014 | 0.1377200 | 0.2052720 | NA |
22 | 51219387 | rs9616832 | T | C | 0.0002300 | 0.0011163 | 0.8367737 | 0.8367684 | 0.0738368 | 0.0654952 | NA |
22 | 51219704 | rs147475742 | G | A | -0.0008092 | 0.0014992 | 0.5893591 | 0.5893571 | 0.0418842 | 0.0473243 | NA |
22 | 51220517 | rs9616980 | C | G | 0.0033668 | 0.0033587 | 0.3161331 | 0.3161448 | 0.0101005 | 0.0027955 | NA |
22 | 51221190 | rs369304721 | G | A | 0.0009026 | 0.0014975 | 0.5466634 | 0.5466653 | 0.0496775 | NA | NA |
22 | 51221731 | rs115055839 | T | C | 0.0001888 | 0.0011170 | 0.8657769 | 0.8657847 | 0.0733326 | 0.0625000 | NA |
22 | 51222100 | rs114553188 | G | T | 0.0012224 | 0.0013185 | 0.3538832 | 0.3538673 | 0.0543840 | 0.0880591 | NA |
22 | 51229805 | rs9616985 | T | C | 0.0002009 | 0.0011210 | 0.8577742 | 0.8577829 | 0.0731347 | 0.0730831 | NA |
22 | 51232488 | rs376461333 | A | G | 0.0004756 | 0.0026521 | 0.8576715 | 0.8576700 | 0.0199164 | NA | NA |
1 15850 rs575961614 G A . PASS AF=0.021251 ES:SE:LP:AF:ID -0.00087245:0.00287:0.11854:0.021251:rs575961614
1 82103 rs2020400 T C . PASS AF=0.924899 ES:SE:LP:AF:ID -0.0038445:0.0014332:2.1363:0.924899:rs2020400
1 174747 rs1399732465 C T . PASS AF=0.0257265 ES:SE:LP:AF:ID -0.00024992:0.0028791:0.031131:0.0257265:rs1399732465
1 234313 rs8179466 C T . PASS AF=0.0747264 ES:SE:LP:AF:ID -0.0014572:0.0019779:0.33603:0.0747264:rs8179466
1 546697 rs12025928 A G . PASS AF=0.913371 ES:SE:LP:AF:ID -0.00093236:0.0014281:0.28917:0.913371:rs12025928
1 568800 rs375217967 G A . PASS AF=0.0168716 ES:SE:LP:AF:ID -0.010602:0.0039277:2.1579:0.0168716:rs375217967
1 693731 rs12238997 A G . PASS AF=0.11576 ES:SE:LP:AF:ID -0.00048265:0.00096457:0.20985:0.11576:rs12238997
1 705882 rs72631875 G A . PASS AF=0.0670992 ES:SE:LP:AF:ID 0.0029974:0.0014117:1.472:0.0670992:rs72631875
1 717587 rs144155419 G A . PASS AF=0.0158778 ES:SE:LP:AF:ID -0.0017362:0.0025679:0.30193:0.0158778:rs144155419
1 722670 rs116030099 T C . PASS AF=0.101583 ES:SE:LP:AF:ID -0.00079195:0.0011745:0.30093:0.101583:rs116030099
1 724849 rs12126395 C A . PASS AF=0.0318946 ES:SE:LP:AF:ID 2.377e-05:0.0027913:0.0029608:0.0318946:rs12126395
1 730087 rs148120343 T C . PASS AF=0.0562198 ES:SE:LP:AF:ID 0.0017517:0.0013466:0.71374:0.0562198:rs148120343
1 731453 rs186002080 G A . PASS AF=0.0157877 ES:SE:LP:AF:ID 0.0049503:0.003048:0.9815:0.0157877:rs186002080
1 732989 rs369030935 C T . PASS AF=0.0262225 ES:SE:LP:AF:ID -0.0018152:0.0022222:0.383:0.0262225:rs369030935
1 734349 rs141242758 T C . PASS AF=0.120831 ES:SE:LP:AF:ID -0.00015661:0.00091604:0.06336:0.120831:rs141242758
1 736689 rs181876450 T C . PASS AF=0.0110481 ES:SE:LP:AF:ID -0.0033173:0.0032796:0.50617:0.0110481:rs181876450
1 753405 rs3115860 C A . PASS AF=0.871214 ES:SE:LP:AF:ID 0.0001301:0.0008697:0.054981:0.871214:rs3115860
1 753541 rs2073813 G A . PASS AF=0.128332 ES:SE:LP:AF:ID -9.7679e-05:0.00087141:0.040601:0.128332:rs2073813
1 754182 rs3131969 A G . PASS AF=0.870815 ES:SE:LP:AF:ID 0.0001618:0.00086818:0.06948:0.870815:rs3131969
1 754192 rs3131968 A G . PASS AF=0.870915 ES:SE:LP:AF:ID 0.00016945:0.00086853:0.072983:0.870915:rs3131968
1 754334 rs3131967 T C . PASS AF=0.870814 ES:SE:LP:AF:ID 0.00016048:0.0008682:0.068873:0.870814:rs3131967
1 755240 rs181660517 T G . PASS AF=0.0141299 ES:SE:LP:AF:ID -0.004239:0.0027824:0.89404:0.0141299:rs181660517
1 755890 rs3115858 A T . PASS AF=0.870871 ES:SE:LP:AF:ID 0.00013575:0.00086713:0.057694:0.870871:rs3115858
1 756604 rs3131962 A G . PASS AF=0.870441 ES:SE:LP:AF:ID 0.00010468:0.0008651:0.043982:0.870441:rs3131962
1 757640 rs3115853 G A . PASS AF=0.869704 ES:SE:LP:AF:ID 0.0001457:0.00086335:0.062491:0.869704:rs3115853
1 757734 rs4951929 C T . PASS AF=0.870579 ES:SE:LP:AF:ID 8.8529e-05:0.00086576:0.036896:0.870579:rs4951929
1 757936 rs4951862 C A . PASS AF=0.870584 ES:SE:LP:AF:ID 8.9289e-05:0.00086583:0.037222:0.870584:rs4951862
1 758144 rs3131956 A G . PASS AF=0.870593 ES:SE:LP:AF:ID 9.4151e-05:0.00086585:0.039334:0.870593:rs3131956
1 758626 rs3131954 C T . PASS AF=0.871051 ES:SE:LP:AF:ID 0.00010933:0.0008681:0.045866:0.871051:rs3131954
1 761732 rs2286139 C T . PASS AF=0.864333 ES:SE:LP:AF:ID -0.00018029:0.00086278:0.078585:0.864333:rs2286139
1 766007 rs61768174 A C . PASS AF=0.105001 ES:SE:LP:AF:ID 0.00024261:0.00096399:0.09621:0.105001:rs61768174
1 768253 rs2977608 A C . PASS AF=0.764108 ES:SE:LP:AF:ID 0.0010085:0.00068452:0.85184:0.764108:rs2977608
1 768448 rs12562034 G A . PASS AF=0.105493 ES:SE:LP:AF:ID -0.0019113:0.00094592:1.3633:0.105493:rs12562034
1 769223 rs60320384 C G . PASS AF=0.128367 ES:SE:LP:AF:ID 2.8788e-05:0.00087081:0.011607:0.128367:rs60320384
1 769885 rs200025137 G A . PASS AF=0.0142669 ES:SE:LP:AF:ID -0.0023445:0.0043687:0.22805:0.0142669:rs200025137
1 770085 rs150344285 G C . PASS AF=0.0106405 ES:SE:LP:AF:ID -0.0010485:0.0040634:0.098875:0.0106405:rs150344285
1 771823 rs2977605 T C . PASS AF=0.870415 ES:SE:LP:AF:ID -5.3417e-05:0.0008665:0.021891:0.870415:rs2977605
1 771967 rs59066358 G A . PASS AF=0.128427 ES:SE:LP:AF:ID 5.5037e-05:0.00087024:0.022472:0.128427:rs59066358
1 772755 rs2905039 A C . PASS AF=0.870432 ES:SE:LP:AF:ID -8.2278e-05:0.00086655:0.034161:0.870432:rs2905039
1 772927 rs116390263 C T . PASS AF=0.0165685 ES:SE:LP:AF:ID 0.011348:0.0038888:2.4533:0.0165685:rs116390263
1 773124 rs142049927 T C . PASS AF=0.0127878 ES:SE:LP:AF:ID 0.013111:0.0044027:2.5372:0.0127878:rs142049927
1 773136 rs146709693 G T . PASS AF=0.0129655 ES:SE:LP:AF:ID 0.01276:0.0043724:2.4535:0.0129655:rs146709693
1 774760 rs187867912 C T . PASS AF=0.0133112 ES:SE:LP:AF:ID -0.0027877:0.0031569:0.42342:0.0133112:rs187867912
1 775125 rs147281566 C T . PASS AF=0.0125003 ES:SE:LP:AF:ID 0.011757:0.0042661:2.2325:0.0125003:rs147281566
1 777122 rs2980319 A T . PASS AF=0.871451 ES:SE:LP:AF:ID -0.00011555:0.00086807:0.048611:0.871451:rs2980319
1 777232 rs112618790 C T . PASS AF=0.0953182 ES:SE:LP:AF:ID -0.0019065:0.0010019:1.2436:0.0953182:rs112618790
1 778745 rs1055606 A G . PASS AF=0.12741 ES:SE:LP:AF:ID 6.8709e-05:0.00087131:0.028193:0.12741:rs1055606
1 779322 rs4040617 A G . PASS AF=0.127643 ES:SE:LP:AF:ID 7.5796e-05:0.00086998:0.031249:0.127643:rs4040617
1 780785 rs2977612 T A . PASS AF=0.870505 ES:SE:LP:AF:ID -6.0469e-05:0.00086604:0.024874:0.870505:rs2977612
1 781845 rs61768199 A G . PASS AF=0.102012 ES:SE:LP:AF:ID 0.00026702:0.00097651:0.1054:0.102012:rs61768199