{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST005810,TotalVariants=15543682,VariantsNotRead=0,HarmonisedVariants=15543680,VariantsNotHarmonised=2,SwitchedAlleles=3,TotalControls=9593.0,TotalCases=2396.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-27T07:28:57.398627",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/EBI-a-GCST005810_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/EBI-a-GCST005810.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/EBI-a-GCST005810_data.vcf.gz; Date=Sun Oct 27 07:56:05 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST005810/ebi-a-GCST005810.vcf.gz; Date=Sun May 10 11:37:27 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/EBI-a-GCST005810.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sun Oct 27 08:22:01 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST005810/EBI-a-GCST005810.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sun Oct 27 08:23:45 2019
Total time elapsed: 1.0m:43.74s
{
"af_correlation": 0.9553,
"inflation_factor": 0.9644,
"mean_EFFECT": -0.0003,
"n": "-Inf",
"n_snps": 15543680,
"n_clumped_hits": 0,
"n_p_sig": 0,
"n_mono": 0,
"n_ns": 1394415,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 468425,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 58 | 0 | 15520568 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 84 | 0 | 66632 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 63 | 0 | 34207 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 15521131 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.769916e+00 | 5.807564e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▅▃▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.836083e+07 | 5.621572e+07 | 56.0000000 | 3.224883e+07 | 6.884319e+07 | 1.137980e+08 | 2.492397e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | -3.275000e-04 | 2.479662e-01 | -8.1659000 | -5.874530e-02 | 1.720200e-03 | 6.503530e-02 | 7.034610e+00 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.900242e-01 | 2.890786e-01 | 0.0316581 | 4.216010e-02 | 9.946850e-02 | 3.000450e-01 | 2.150410e+01 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.048043e-01 | 2.889569e-01 | 0.0000001 | 2.551779e-01 | 5.077232e-01 | 7.553861e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.063263e-01 | 2.878437e-01 | 0.0000000 | 2.586293e-01 | 5.091404e-01 | 7.555279e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 1.648066e-01 | 2.461007e-01 | 0.0010000 | 3.753400e-03 | 3.063820e-02 | 2.366795e-01 | 9.989990e-01 | ▇▁▁▁▁ |
numeric | AF_reference | 468425 | 0.9698202 | NA | NA | NA | NA | NA | NA | NA | 1.678114e-01 | 2.389264e-01 | 0.0000000 | 1.996800e-03 | 4.353040e-02 | 2.509980e-01 | 1.000000e+00 | ▇▂▁▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10177 | rs367896724 | A | AC | 0.1002850 | 0.0462299 | 0.0303438 | 0.0300624 | 0.3932930 | 0.4253190 | NA |
1 | 10352 | rs555500075 | T | TA | -0.0676942 | 0.0492497 | 0.1682500 | 0.1692834 | 0.3878300 | 0.4375000 | NA |
1 | 10616 | rs376342519 | CCGCCGTTGCAAAGGCGCGCCG | C | -0.1059600 | 0.2909860 | 0.7192734 | 0.7157526 | 0.9947080 | 0.9930110 | NA |
1 | 11012 | rs544419019 | C | G | 0.0141324 | 0.0808825 | 0.8615399 | 0.8612937 | 0.0846656 | 0.0880591 | NA |
1 | 13110 | rs540538026 | G | A | -0.1157700 | 0.1096840 | 0.2833101 | 0.2912028 | 0.0611845 | 0.0267572 | NA |
1 | 13116 | rs62635286 | T | G | -0.1570190 | 0.0666911 | 0.0166223 | 0.0185515 | 0.1926570 | 0.0970447 | NA |
1 | 13118 | rs200579949 | A | G | -0.1570190 | 0.0666911 | 0.0166223 | 0.0185515 | 0.1926570 | 0.0970447 | NA |
1 | 13273 | rs531730856 | G | C | 0.1321250 | 0.0699654 | 0.0622644 | 0.0589678 | 0.1326330 | 0.0950479 | NA |
1 | 13453 | rs568927457 | T | C | 0.1023720 | 0.2976780 | 0.7352483 | 0.7309201 | 0.0059674 | 0.0007987 | NA |
1 | 13483 | rs554760071 | G | C | 0.1075390 | 0.3229520 | 0.7438922 | 0.7391437 | 0.0051827 | 0.0019968 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51238328 | rs553081191 | A | C | 0.4053040 | 0.399525 | 0.3290561 | 0.3103611 | 0.0017116 | 0.0005990 | NA |
22 | 51238364 | rs564490465 | C | G | 0.5195100 | 0.290416 | 0.0885870 | 0.0736393 | 0.0049424 | 0.0005990 | NA |
22 | 51238394 | rs149712012 | C | T | -0.6814410 | 0.476514 | 0.1064030 | 0.1527014 | 0.0035693 | 0.0033946 | NA |
22 | 51239281 | rs8138215 | G | C | 0.3149740 | 0.446349 | 0.4961580 | 0.4803949 | 0.0016429 | 0.0111821 | NA |
22 | 51239296 | rs8137179 | T | C | 0.3149740 | 0.446349 | 0.4961580 | 0.4803949 | 0.0016429 | 0.0111821 | NA |
22 | 51239304 | rs8142977 | C | T | 0.3149740 | 0.446349 | 0.4961580 | 0.4803949 | 0.0016429 | 0.0111821 | NA |
22 | 51239586 | rs535432390 | T | G | -1.7004700 | 1.729580 | 0.0749290 | 0.3255241 | 0.0018701 | 0.0001997 | NA |
22 | 51239794 | rs561893765 | C | A | -0.6077290 | 0.690309 | 0.3314317 | 0.3786576 | 0.0018358 | 0.0299521 | NA |
22 | 51240820 | rs202228854 | C | T | 0.0152015 | 0.126881 | 0.9054759 | 0.9046344 | 0.0262359 | 0.1267970 | NA |
22 | 51244237 | rs575160859 | C | T | -0.0306624 | 0.201600 | 0.8785871 | 0.8791118 | 0.0132401 | 0.0037939 | NA |
1 10177 rs367896724 A AC . PASS AF=0.393293 ES:SE:LP:AF:ID 0.100285:0.0462299:1.51793:0.393293:rs367896724
1 10352 rs555500075 T TA . PASS AF=0.38783 ES:SE:LP:AF:ID -0.0676942:0.0492497:0.774045:0.38783:rs555500075
1 10616 rs376342519 CCGCCGTTGCAAAGGCGCGCCG C . PASS AF=0.994708 ES:SE:LP:AF:ID -0.10596:0.290986:0.143106:0.994708:rs376342519
1 11012 rs544419019 C G . PASS AF=0.0846656 ES:SE:LP:AF:ID 0.0141324:0.0808825:0.0647246:0.0846656:rs544419019
1 13110 rs540538026 G A . PASS AF=0.0611845 ES:SE:LP:AF:ID -0.11577:0.109684:0.547738:0.0611845:rs540538026
1 13116 rs62635286 T G . PASS AF=0.192657 ES:SE:LP:AF:ID -0.157019:0.0666911:1.77931:0.192657:rs62635286
1 13118 rs62028691 A G . PASS AF=0.192657 ES:SE:LP:AF:ID -0.157019:0.0666911:1.77931:0.192657:rs62028691
1 13273 rs531730856 G C . PASS AF=0.132633 ES:SE:LP:AF:ID 0.132125:0.0699654:1.20576:0.132633:rs531730856
1 13453 rs568927457 T C . PASS AF=0.0059674 ES:SE:LP:AF:ID 0.102372:0.297678:0.133566:0.0059674:rs568927457
1 13483 rs554760071 G C . PASS AF=0.0051827 ES:SE:LP:AF:ID 0.107539:0.322952:0.12849:0.0051827:rs554760071
1 14464 rs546169444 A T . PASS AF=0.158163 ES:SE:LP:AF:ID -0.0193693:0.0661443:0.113951:0.158163:rs546169444
1 14599 rs707680 T A . PASS AF=0.192988 ES:SE:LP:AF:ID 0.0789058:0.0598588:0.720388:0.192988:rs707680
1 14604 rs541940975 A G . PASS AF=0.192988 ES:SE:LP:AF:ID 0.0789058:0.0598588:0.720388:0.192988:rs541940975
1 14930 rs6682385 A G . PASS AF=0.46955 ES:SE:LP:AF:ID 0.00958963:0.0478477:0.0751162:0.46955:rs6682385
1 14933 rs199856693 G A . PASS AF=0.0491667 ES:SE:LP:AF:ID -0.0279575:0.111032:0.0966587:0.0491667:rs199856693
1 15211 rs3982632 T G . PASS AF=0.745228 ES:SE:LP:AF:ID -0.0881682:0.054192:0.976299:0.745228:rs3982632
1 15245 rs576044687 C T . PASS AF=0.00117504 ES:SE:LP:AF:ID 0.535115:0.551153:0.453193:0.00117504:rs576044687
1 15644 rs564003018 G A . PASS AF=0.00346843 ES:SE:LP:AF:ID -0.420602:0.463931:0.47949:0.00346843:rs564003018
1 15820 rs2691315 G T . PASS AF=0.272828 ES:SE:LP:AF:ID -0.0883886:0.0567234:0.93255:0.272828:rs2691315
1 15903 rs557514207 G GC . PASS AF=0.407492 ES:SE:LP:AF:ID 0.0229205:0.0466352:0.205324:0.407492:rs557514207
1 16142 rs548165136 G A . PASS AF=0.00311841 ES:SE:LP:AF:ID -0.116027:0.426389:0.106471:0.00311841:rs548165136
1 16949 rs199745162 A C . PASS AF=0.0208271 ES:SE:LP:AF:ID 0.00376431:0.169775:0.00771209:0.0208271:rs199745162
1 18643 rs564023708 G A . PASS AF=0.00602273 ES:SE:LP:AF:ID -0.248169:0.362468:0.323974:0.00602273:rs564023708
1 18849 rs533090414 C G . PASS AF=0.975361 ES:SE:LP:AF:ID -0.122525:0.135548:0.427705:0.975361:rs533090414
1 30923 rs806731 G T . PASS AF=0.904884 ES:SE:LP:AF:ID -0.100571:0.0816593:0.650078:0.904884:rs806731
1 46285 rs545414834 ATAT A . PASS AF=0.0017292 ES:SE:LP:AF:ID -0.546:0.62169:0.460761:0.0017292:rs545414834
1 47159 rs540662756 T C . PASS AF=0.0659771 ES:SE:LP:AF:ID 0.0231005:0.0987932:0.0884919:0.0659771:rs540662756
1 49298 rs10399793 T C . PASS AF=0.838935 ES:SE:LP:AF:ID -0.0208664:0.0658848:0.123812:0.838935:rs10399793
1 49318 rs536836601 A G . PASS AF=0.0015893 ES:SE:LP:AF:ID -0.457101:0.690389:0.324258:0.0015893:rs536836601
1 49343 rs553572247 T C . PASS AF=0.00231753 ES:SE:LP:AF:ID -0.440793:0.560749:0.397584:0.00231753:rs553572247
1 49554 rs539322794 A G . PASS AF=0.0970869 ES:SE:LP:AF:ID 0.0648837:0.0807619:0.371453:0.0970869:rs539322794
1 51047 rs559500163 A T . PASS AF=0.00149565 ES:SE:LP:AF:ID 0.979865:0.480033:1.27817:0.00149565:rs559500163
1 51049 rs528344458 A C . PASS AF=0.00149565 ES:SE:LP:AF:ID 0.979865:0.480033:1.27817:0.00149565:rs528344458
1 51050 rs551668143 A T . PASS AF=0.00149565 ES:SE:LP:AF:ID 0.979865:0.480033:1.27817:0.00149565:rs551668143
1 51053 rs565211799 G T . PASS AF=0.00149565 ES:SE:LP:AF:ID 0.979865:0.480033:1.27817:0.00149565:rs565211799
1 51479 rs116400033 T A . PASS AF=0.211376 ES:SE:LP:AF:ID 0.067815:0.057876:0.612991:0.211376:rs116400033
1 51762 rs559190862 A G . PASS AF=0.0093499 ES:SE:LP:AF:ID -0.157683:0.261467:0.270434:0.0093499:rs559190862
1 51765 rs575564077 C G . PASS AF=0.00908569 ES:SE:LP:AF:ID -0.159228:0.2626:0.272266:0.00908569:rs575564077
1 52238 rs2691277 T G . PASS AF=0.978303 ES:SE:LP:AF:ID 0.10504:0.183968:0.250475:0.978303:rs2691277
1 54353 rs140052487 C A . PASS AF=0.00216849 ES:SE:LP:AF:ID -0.779788:0.601046:0.871258:0.00216849:rs140052487
1 54354 rs569165477 C T . PASS AF=0.00210071 ES:SE:LP:AF:ID 0.611342:0.359041:0.973267:0.00210071:rs569165477
1 54490 rs141149254 G A . PASS AF=0.152906 ES:SE:LP:AF:ID 0.0623122:0.0644395:0.473214:0.152906:rs141149254
1 54591 rs561234294 A G . PASS AF=0.00205898 ES:SE:LP:AF:ID 0.646432:0.418164:0.820937:0.00205898:rs561234294
1 54716 rs569128616 C T . PASS AF=0.42841 ES:SE:LP:AF:ID 0.0228149:0.0496079:0.189945:0.42841:rs569128616
1 54945 rs569799965 C A . PASS AF=0.00558516 ES:SE:LP:AF:ID 0.193927:0.300445:0.276994:0.00558516:rs569799965
1 55164 rs3091274 C A . PASS AF=0.982694 ES:SE:LP:AF:ID 0.003915:0.194572:0.00714572:0.982694:rs3091274
1 55249 rs200769871 C CTATGG . PASS AF=0.00911021 ES:SE:LP:AF:ID -0.279426:0.284662:0.514066:0.00911021:rs200769871
1 55326 rs3107975 T C . PASS AF=0.0162927 ES:SE:LP:AF:ID -0.0646485:0.201971:0.126974:0.0162927:rs3107975
1 55545 rs28396308 C T . PASS AF=0.258061 ES:SE:LP:AF:ID -0.0196984:0.0556846:0.140778:0.258061:rs28396308
1 56586 rs541979596 G A . PASS AF=0.00113089 ES:SE:LP:AF:ID 0.0629053:0.603289:0.0367143:0.00113089:rs541979596