Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST004904,TotalVariants=5952516,VariantsNotRead=0,HarmonisedVariants=5952516,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=158284.0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-26T21:44:19.015689",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/EBI-a-GCST004904_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/EBI-a-GCST004904.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/EBI-a-GCST004904_data.vcf.gz; Date=Sat Oct 26 21:58:00 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST004904/ebi-a-GCST004904.vcf.gz; Date=Sun May 10 12:32:53 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/EBI-a-GCST004904.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sat Oct 26 22:23:21 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004904/EBI-a-GCST004904.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sat Oct 26 22:24:00 2019
Total time elapsed: 38.92s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.8843,
    "inflation_factor": 1.44,
    "mean_EFFECT": 0.0001,
    "n": "-Inf",
    "n_snps": 5952516,
    "n_clumped_hits": 67,
    "n_p_sig": 5075,
    "n_mono": 0,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": true,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 19,
    "n_miss_AF_reference": 68224,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor TRUE
n TRUE
is_snpid_non_unique FALSE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig TRUE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 57 0 5940313 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 5940315 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.548647e+00 5.693248e+00 1.000000 4.000000e+00 7.000000e+00 1.200000e+01 2.300000e+01 ▇▅▅▂▂
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 7.931908e+07 5.621613e+07 828.000000 3.287988e+07 7.017075e+07 1.149981e+08 2.492026e+08 ▇▇▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA 8.720000e-05 8.809800e-03 -0.266500 -4.246000e-03 6.450000e-05 4.345000e-03 5.140000e-01 ▁▇▁▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 6.325900e-03 4.582800e-03 0.003527 3.854000e-03 4.679000e-03 6.990000e-03 4.043000e-01 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.409122e-01 3.038299e-01 0.000000 1.630001e-01 4.183001e-01 7.039001e-01 1.000000e+00 ▇▆▅▅▅
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.409122e-01 3.038299e-01 0.000000 1.629643e-01 4.182746e-01 7.039413e-01 9.999997e-01 ▇▆▅▅▅
numeric AF 19 0.9999968 NA NA NA NA NA NA NA 3.151725e-01 2.705347e-01 0.000100 8.310000e-02 2.337000e-01 4.970000e-01 9.999000e-01 ▇▃▂▂▂
numeric AF_reference 68224 0.9885151 NA NA NA NA NA NA NA 3.009431e-01 2.413757e-01 0.000000 1.022360e-01 2.346250e-01 4.586660e-01 1.000000e+00 ▇▅▃▂▁

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 751756 rs143225517 T C 0.0002037 0.005048 0.9678000 0.9678120 0.1517 0.2422120 NA
1 752566 rs3094315 G A -0.0002009 0.004899 0.9673000 0.9672892 0.8438 0.7182510 NA
1 753405 rs3115860 C A -0.0002146 0.005262 0.9675001 0.9674689 0.8385 0.7517970 NA
1 845635 rs117086422 C T 0.0016340 0.005477 0.7653992 0.7654448 0.1402 0.1585460 NA
1 846078 rs28612348 C T 0.0017210 0.005483 0.7537008 0.7536127 0.1419 0.1617410 NA
1 846808 rs4475691 C T 0.0013900 0.005094 0.7848994 0.7849531 0.1411 0.2547920 NA
1 846864 rs950122 G C 0.0013890 0.005094 0.7851000 0.7851040 0.1411 0.2228430 NA
1 847228 rs3905286 C T 0.0010790 0.005153 0.8342000 0.8341418 0.1391 0.2426120 NA
1 847491 rs28407778 G A 0.0010370 0.005155 0.8405000 0.8405704 0.1394 0.2519970 NA
1 847983 rs79932038 C T 0.0010670 0.011400 0.9254000 0.9254297 0.0318 0.0015974 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51165390 rs76268556 C T -0.0059120 0.007511 0.4312002 0.4312162 0.0772 0.0515176 NA
22 51165664 rs8137951 G A 0.0063150 0.003687 0.0867401 0.0867540 0.3924 0.4063500 NA
22 51169045 rs8140772 C T -0.0058160 0.006333 0.3584000 0.3584283 0.0903 0.0632987 NA
22 51171497 rs2301584 G A 0.0094490 0.004108 0.0214501 0.0214399 0.2496 0.2533950 NA
22 51171667 rs41281537 G A -0.0053350 0.006210 0.3903004 0.3902863 0.0910 0.0577077 NA
22 51171693 rs756638 G A -0.0040040 0.005603 0.4748003 0.4748456 0.1129 0.3049120 NA
22 51172460 rs5770824 T C -0.0058610 0.006397 0.3595001 0.3595564 0.0984 0.0684904 NA
22 51175626 rs3810648 A G 0.0015460 0.017330 0.9289001 0.9289154 0.0104 0.1084270 NA
22 51178090 rs2285395 G A 0.0005625 0.017410 0.9741999 0.9742256 0.0103 0.0666933 NA
23 147407824 rs28859988 G A -0.0087770 0.009116 0.3356000 0.3356416 0.0414 NA NA

bcf preview

1   751756  rs28527770  T   C   .   PASS    AF=0.1517   ES:SE:LP:AF:ID  0.0002037:0.005048:0.0142144:0.1517:rs28527770
1   752566  rs3094315   G   A   .   PASS    AF=0.8438   ES:SE:LP:AF:ID  -0.0002009:0.004899:0.0144388:0.8438:rs3094315
1   753405  rs3115860   C   A   .   PASS    AF=0.8385   ES:SE:LP:AF:ID  -0.0002146:0.005262:0.014349:0.8385:rs3115860
1   845635  rs117086422 C   T   .   PASS    AF=0.1402   ES:SE:LP:AF:ID  0.001634:0.005477:0.116112:0.1402:rs117086422
1   846078  rs28612348  C   T   .   PASS    AF=0.1419   ES:SE:LP:AF:ID  0.001721:0.005483:0.122801:0.1419:rs28612348
1   846808  rs4475691   C   T   .   PASS    AF=0.1411   ES:SE:LP:AF:ID  0.00139:0.005094:0.105186:0.1411:rs4475691
1   846864  rs950122    G   C   .   PASS    AF=0.1411   ES:SE:LP:AF:ID  0.001389:0.005094:0.105075:0.1411:rs950122
1   847228  rs3905286   C   T   .   PASS    AF=0.1391   ES:SE:LP:AF:ID  0.001079:0.005153:0.0787298:0.1391:rs3905286
1   847491  rs28407778  G   A   .   PASS    AF=0.1394   ES:SE:LP:AF:ID  0.001037:0.005155:0.0754623:0.1394:rs28407778
1   847983  rs79932038  C   T   .   PASS    AF=0.0318   ES:SE:LP:AF:ID  0.001067:0.0114:0.0336705:0.0318:rs79932038
1   848090  rs4246505   G   A   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.001002:0.005153:0.0727323:0.1389:rs4246505
1   848445  rs4626817   G   A   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.0009995:0.005153:0.072527:0.1389:rs4626817
1   848456  rs11507767  A   G   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.0009969:0.005153:0.0723217:0.1389:rs11507767
1   848738  rs3829741   C   T   .   PASS    AF=0.1392   ES:SE:LP:AF:ID  0.0009567:0.005154:0.0692037:0.1392:rs3829741
1   850062  rs28723578  A   T   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.001013:0.00523:0.072373:0.1389:rs28723578
1   850123  rs28622257  C   T   .   PASS    AF=0.1372   ES:SE:LP:AF:ID  0.0009068:0.005216:0.0644927:0.1372:rs28622257
1   850373  rs151325546 A   G   .   PASS    AF=0.0375   ES:SE:LP:AF:ID  0.001014:0.009578:0.0382942:0.0375:rs151325546
1   851190  rs28609852  G   A   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.0008615:0.005145:0.0619809:0.1389:rs28609852
1   851204  rs28552953  G   C   .   PASS    AF=0.1389   ES:SE:LP:AF:ID  0.0008571:0.005144:0.0616304:0.1389:rs28552953
1   852664  rs28605311  C   T   .   PASS    AF=0.1388   ES:SE:LP:AF:ID  0.0008434:0.005143:0.0606305:0.1388:rs28605311
1   852758  rs4970462   G   C   .   PASS    AF=0.1388   ES:SE:LP:AF:ID  0.0008409:0.005143:0.0604308:0.1388:rs4970462
1   853089  rs78738176  G   C   .   PASS    AF=0.0378   ES:SE:LP:AF:ID  0.0009705:0.009464:0.0370154:0.0378:rs78738176
1   853239  rs4970380   A   G   .   PASS    AF=0.1388   ES:SE:LP:AF:ID  0.000833:0.005142:0.0598323:0.1388:rs4970380
1   853596  rs191666748 A   G   .   PASS    AF=0.0378   ES:SE:LP:AF:ID  0.0009743:0.009446:0.0372046:0.0378:rs191666748
1   854250  rs7537756   A   G   .   PASS    AF=0.1766   ES:SE:LP:AF:ID  0.0009044:0.004646:0.0727837:0.1766:rs7537756
1   854793  rs80174979  A   C   .   PASS    AF=0.0378   ES:SE:LP:AF:ID  0.0009723:0.009435:0.0372046:0.0378:rs80174979
1   857177  rs28409649  T   C   .   PASS    AF=0.4594   ES:SE:LP:AF:ID  0.01057:0.003702:2.36815:0.4594:rs28409649
1   858040  rs4970460   C   A   .   PASS    AF=0.1732   ES:SE:LP:AF:ID  -0.001647:0.005513:0.116225:0.1732:rs4970460
1   858051  rs4970459   C   T   .   PASS    AF=0.1732   ES:SE:LP:AF:ID  -0.001658:0.005514:0.117134:0.1732:rs4970459
1   858801  rs7418179   A   G   .   PASS    AF=0.4063   ES:SE:LP:AF:ID  -0.01183:0.003862:2.66134:0.4063:rs7418179
1   859404  rs71509444  C   G   .   PASS    AF=0.5782   ES:SE:LP:AF:ID  -0.01142:0.003926:2.43997:0.5782:rs71509444
1   859690  rs71509445  C   G   .   PASS    AF=0.5313   ES:SE:LP:AF:ID  -0.01089:0.003869:2.31016:0.5313:rs71509445
1   859701  rs71509446  C   G   .   PASS    AF=0.5038   ES:SE:LP:AF:ID  -0.01134:0.004007:2.33301:0.5038:rs71509446
1   860416  rs61464428  G   A   .   PASS    AF=0.4175   ES:SE:LP:AF:ID  -0.01204:0.003879:2.71738:0.4175:rs61464428
1   860461  rs57465118  G   A   .   PASS    AF=0.5388   ES:SE:LP:AF:ID  -0.01053:0.003666:2.38955:0.5388:rs57465118
1   860521  rs57924093  C   A   .   PASS    AF=0.5353   ES:SE:LP:AF:ID  -0.01043:0.003634:2.38806:0.5353:rs57924093
1   860688  rs60837925  G   A   .   PASS    AF=0.4283   ES:SE:LP:AF:ID  -0.01197:0.003937:2.62801:0.4283:rs60837925
1   860778  rs61338526  A   G   .   PASS    AF=0.5071   ES:SE:LP:AF:ID  -0.01088:0.003825:2.35301:0.5071:rs61338526
1   860857  rs141034733 G   A   .   PASS    AF=0.0457   ES:SE:LP:AF:ID  0.0003655:0.009681:0.013273:0.0457:rs141034733
1   861008  rs28521172  G   C   .   PASS    AF=0.5404   ES:SE:LP:AF:ID  -0.01038:0.003592:2.41296:0.5404:rs28521172
1   861630  rs2879816   G   A   .   PASS    AF=0.4066   ES:SE:LP:AF:ID  -0.01162:0.003781:2.67551:0.4066:rs2879816
1   861808  rs13302982  A   G   .   PASS    AF=0.5404   ES:SE:LP:AF:ID  -0.01036:0.003586:2.41398:0.5404:rs13302982
1   862072  rs76842830  C   T   .   PASS    AF=0.0374   ES:SE:LP:AF:ID  0.001209:0.009726:0.045227:0.0374:rs76842830
1   862093  rs13303291  T   C   .   PASS    AF=0.5403   ES:SE:LP:AF:ID  -0.01049:0.00363:2.41184:0.5403:rs13303291
1   862124  rs13303101  A   G   .   PASS    AF=0.54 ES:SE:LP:AF:ID  -0.01076:0.003733:2.40461:0.54:rs13303101
1   862383  rs6680268   C   T   .   PASS    AF=0.5397   ES:SE:LP:AF:ID  -0.01098:0.003814:2.39957:0.5397:rs6680268
1   862389  rs6693546   A   G   .   PASS    AF=0.5397   ES:SE:LP:AF:ID  -0.01099:0.003816:2.39979:0.5397:rs6693546
1   863124  rs4040604   G   T   .   PASS    AF=0.5421   ES:SE:LP:AF:ID  -0.01153:0.004003:2.40143:0.5421:rs4040604
1   876499  rs4372192   A   G   .   PASS    AF=0.9472   ES:SE:LP:AF:ID  0.008195:0.009274:0.423774:0.9472:rs4372192
1   879676  rs6605067   G   A   .   PASS    AF=0.9453   ES:SE:LP:AF:ID  0.007936:0.009125:0.415104:0.9453:rs6605067