{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST004734,TotalVariants=2549728,VariantsNotRead=0,HarmonisedVariants=2549725,VariantsNotHarmonised=3,SwitchedAlleles=0,TotalControls=27850.0,StudyType=Continuous>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-27T07:19:33.416128",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/EBI-a-GCST004734_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/EBI-a-GCST004734.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/EBI-a-GCST004734_data.vcf.gz; Date=Sun Oct 27 07:23:56 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST004734/ebi-a-GCST004734.vcf.gz; Date=Sun May 10 05:03:03 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/EBI-a-GCST004734.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sun Oct 27 07:46:07 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST004734/EBI-a-GCST004734.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sun Oct 27 07:46:22 2019
Total time elapsed: 15.06s
{
"af_correlation": 0.9287,
"inflation_factor": 1.0322,
"mean_EFFECT": 6.9632e-06,
"n": "-Inf",
"n_snps": 2549725,
"n_clumped_hits": 6,
"n_p_sig": 102,
"n_mono": 0,
"n_ns": 0,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 20700,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 42 | 0 | 2543022 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 2543038 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.582789e+00 | 5.661143e+00 | 1.000000 | 4.000000e+00 | 8.000000e+00 | 1.200000e+01 | 2.30000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.893562e+07 | 5.579496e+07 | 6689.000000 | 3.263609e+07 | 7.034726e+07 | 1.144542e+08 | 2.49219e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.000000e-06 | 7.408900e-03 | -0.421123 | -3.541000e-03 | -7.000000e-06 | 3.525000e-03 | 3.75026e-01 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.952600e-03 | 4.232500e-03 | 0.003575 | 3.971000e-03 | 4.685000e-03 | 6.346000e-03 | 3.14344e-01 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.946969e-01 | 2.903197e-01 | 0.000000 | 2.415989e-01 | 4.931693e-01 | 7.463779e-01 | 9.99968e-01 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.929730e-01 | 2.907648e-01 | 0.000000 | 2.390671e-01 | 4.908079e-01 | 7.450338e-01 | 9.99972e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 3.596413e-01 | 2.699429e-01 | 0.010001 | 1.253890e-01 | 2.957940e-01 | 5.565398e-01 | 9.89994e-01 | ▇▅▃▂▂ |
numeric | AF_reference | 20700 | 0.9918601 | NA | NA | NA | NA | NA | NA | NA | 3.624201e-01 | 2.555532e-01 | 0.000000 | 1.473640e-01 | 3.011180e-01 | 5.469250e-01 | 1.00000e+00 | ▇▆▅▃▂ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 721290 | rs12565286 | G | C | -0.006132 | 0.012490 | 0.6253527 | 0.6234599 | 0.052682 | 0.0371406 | NA |
1 | 723819 | rs11804171 | T | A | -0.002594 | 0.012521 | 0.8367089 | 0.8358756 | 0.055861 | 0.1345850 | NA |
1 | 723891 | rs2977670 | G | C | -0.001515 | 0.010406 | 0.8848650 | 0.8842458 | 0.932639 | 0.7799520 | NA |
1 | 752566 | rs3094315 | G | A | 0.006556 | 0.005405 | 0.2276392 | 0.2251486 | 0.787067 | 0.7182510 | NA |
1 | 754192 | rs3131968 | A | G | 0.006343 | 0.005841 | 0.2800722 | 0.2775037 | 0.861152 | 0.6785140 | NA |
1 | 761732 | rs2286139 | C | T | 0.009311 | 0.007284 | 0.2035968 | 0.2011503 | 0.771618 | 0.6257990 | NA |
1 | 768448 | rs12562034 | G | A | -0.004817 | 0.010755 | 0.6560123 | 0.6542364 | 0.088946 | 0.1918930 | NA |
1 | 775659 | rs2905035 | A | G | 0.003599 | 0.006057 | 0.5546244 | 0.5523860 | 0.861948 | 0.7450080 | NA |
1 | 777122 | rs2980319 | A | T | 0.004143 | 0.006056 | 0.4962837 | 0.4939026 | 0.828615 | 0.7472040 | NA |
1 | 779322 | rs4040617 | A | G | -0.009559 | 0.006322 | 0.1325730 | 0.1305284 | 0.137702 | 0.2264380 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51196164 | rs8136603 | A | T | -0.004333 | 0.010240 | 0.6738915 | 0.6721898 | 0.058055 | 0.1427720 | NA |
22 | 51211392 | rs3888396 | T | C | 0.038264 | 0.011115 | 0.0006210 | 0.0005762 | 0.098665 | 0.1641370 | NA |
22 | 51212875 | rs2238837 | A | C | -0.009290 | 0.005682 | 0.1039080 | 0.1020516 | 0.380888 | 0.3724040 | NA |
22 | 51216564 | rs9616970 | T | C | -0.019297 | 0.009933 | 0.0533617 | 0.0520505 | 0.147409 | 0.1563500 | NA |
22 | 51217134 | rs117417021 | A | G | -0.009658 | 0.006443 | 0.1359800 | 0.1338759 | 0.418033 | 0.2671730 | NA |
22 | 51219006 | rs28729663 | G | A | -0.011358 | 0.009442 | 0.2315490 | 0.2290061 | 0.170236 | 0.2052720 | NA |
22 | 51223637 | rs375798137 | G | A | -0.002678 | 0.009740 | 0.7844983 | 0.7833557 | 0.060679 | 0.0788738 | NA |
22 | 51229805 | rs9616985 | T | C | -0.031865 | 0.013384 | 0.0179048 | 0.0172738 | 0.087922 | 0.0730831 | NA |
23 | 91415872 | rs6562597 | G | A | -0.024184 | 0.013675 | 0.0786104 | 0.0769803 | 0.019364 | 0.0021192 | NA |
23 | 118495837 | rs12882977 | G | A | -0.001858 | 0.003743 | 0.6216286 | 0.6196170 | 0.484853 | 0.2307280 | NA |
1 721290 rs12565286 G C . PASS AF=0.052682 ES:SE:LP:AF:ID -0.006132:0.01249:0.203875:0.052682:rs12565286
1 723819 rs11804171 T A . PASS AF=0.055861 ES:SE:LP:AF:ID -0.002594:0.012521:0.0774256:0.055861:rs11804171
1 723891 rs2977670 G C . PASS AF=0.932639 ES:SE:LP:AF:ID -0.001515:0.010406:0.053123:0.932639:rs2977670
1 752566 rs3094315 G A . PASS AF=0.787067 ES:SE:LP:AF:ID 0.006556:0.005405:0.642753:0.787067:rs3094315
1 754192 rs3131968 A G . PASS AF=0.861152 ES:SE:LP:AF:ID 0.006343:0.005841:0.55273:0.861152:rs3131968
1 761732 rs2286139 C T . PASS AF=0.771618 ES:SE:LP:AF:ID 0.009311:0.007284:0.691229:0.771618:rs2286139
1 768448 rs12562034 G A . PASS AF=0.088946 ES:SE:LP:AF:ID -0.004817:0.010755:0.183088:0.088946:rs12562034
1 775659 rs2905035 A G . PASS AF=0.861948 ES:SE:LP:AF:ID 0.003599:0.006057:0.256001:0.861948:rs2905035
1 777122 rs2980319 A T . PASS AF=0.828615 ES:SE:LP:AF:ID 0.004143:0.006056:0.30427:0.828615:rs2980319
1 779322 rs4040617 A G . PASS AF=0.137702 ES:SE:LP:AF:ID -0.009559:0.006322:0.877545:0.137702:rs4040617
1 780785 rs2977612 T A . PASS AF=0.861094 ES:SE:LP:AF:ID 0.005154:0.006508:0.365597:0.861094:rs2977612
1 785050 rs2905062 G A . PASS AF=0.859341 ES:SE:LP:AF:ID 0.008028:0.006305:0.687455:0.859341:rs2905062
1 785989 rs2980300 T C . PASS AF=0.793363 ES:SE:LP:AF:ID 0.007858:0.006196:0.683696:0.793363:rs2980300
1 798026 rs4951864 C T . PASS AF=0.902903 ES:SE:LP:AF:ID 0.003517:0.01003:0.138276:0.902903:rs4951864
1 798801 rs12132517 G A . PASS AF=0.102878 ES:SE:LP:AF:ID -0.00716:0.010034:0.32068:0.102878:rs12132517
1 798959 rs11240777 G A . PASS AF=0.251584 ES:SE:LP:AF:ID -0.003776:0.006275:0.259986:0.251584:rs11240777
1 888659 rs3748597 T C . PASS AF=0.940909 ES:SE:LP:AF:ID 0.01291:0.011533:0.57588:0.940909:rs3748597
1 918573 rs2341354 A G . PASS AF=0.542928 ES:SE:LP:AF:ID -0.001241:0.005844:0.0795156:0.542928:rs2341354
1 926431 rs4970403 A T . PASS AF=0.921422 ES:SE:LP:AF:ID 0.001861:0.012829:0.0529135:0.921422:rs4970403
1 947034 rs2465126 G A . PASS AF=0.890545 ES:SE:LP:AF:ID 0.005789:0.011895:0.201775:0.890545:rs2465126
1 962210 rs3128126 A G . PASS AF=0.440072 ES:SE:LP:AF:ID 0.003045:0.007038:0.175862:0.440072:rs3128126
1 990380 rs3121561 C T . PASS AF=0.292513 ES:SE:LP:AF:ID 0.007829:0.00623:0.675113:0.292513:rs3121561
1 990417 rs2465136 T C . PASS AF=0.341994 ES:SE:LP:AF:ID -0.001431:0.005963:0.0907655:0.341994:rs2465136
1 998501 rs3813193 G C . PASS AF=0.179329 ES:SE:LP:AF:ID -0.001636:0.007936:0.0769986:0.179329:rs3813193
1 1003629 rs4075116 C T . PASS AF=0.724551 ES:SE:LP:AF:ID -0.003219:0.004892:0.289979:0.724551:rs4075116
1 1005806 rs3934834 C T . PASS AF=0.158808 ES:SE:LP:AF:ID -0.000369:0.007325:0.0177315:0.158808:rs3934834
1 1017170 rs3766193 C G . PASS AF=0.539491 ES:SE:LP:AF:ID -0.000662:0.004527:0.0534156:0.539491:rs3766193
1 1017197 rs3766192 C T . PASS AF=0.548414 ES:SE:LP:AF:ID -0.001262:0.004208:0.116078:0.548414:rs3766192
1 1017587 rs3766191 C T . PASS AF=0.153068 ES:SE:LP:AF:ID -0.001293:0.006648:0.0723253:0.153068:rs3766191
1 1018562 rs9442371 C T . PASS AF=0.557052 ES:SE:LP:AF:ID -0.001492:0.0041:0.144253:0.557052:rs9442371
1 1018704 rs9442372 A G . PASS AF=0.557515 ES:SE:LP:AF:ID -0.001982:0.004101:0.200132:0.557515:rs9442372
1 1021346 rs10907177 A G . PASS AF=0.157391 ES:SE:LP:AF:ID -0.001212:0.007362:0.0604987:0.157391:rs10907177
1 1021415 rs3737728 A G . PASS AF=0.708991 ES:SE:LP:AF:ID -0.004559:0.00457:0.493296:0.708991:rs3737728
1 1021583 rs10907178 A C . PASS AF=0.158343 ES:SE:LP:AF:ID -0.001361:0.006569:0.0774017:0.158343:rs10907178
1 1021695 rs9442398 A G . PASS AF=0.717426 ES:SE:LP:AF:ID -0.003322:0.005097:0.286609:0.717426:rs9442398
1 1022037 rs6701114 C T . PASS AF=0.540585 ES:SE:LP:AF:ID -0.001975:0.00453:0.177414:0.540585:rs6701114
1 1026707 rs4074137 C A . PASS AF=0.585939 ES:SE:LP:AF:ID -0.005225:0.006719:0.357303:0.585939:rs4074137
1 1030565 rs6687776 C T . PASS AF=0.158946 ES:SE:LP:AF:ID -0.004576:0.006381:0.322692:0.158946:rs6687776
1 1030633 rs6678318 G A . PASS AF=0.142572 ES:SE:LP:AF:ID -0.001263:0.006922:0.0675166:0.142572:rs6678318
1 1031540 rs9651273 A G . PASS AF=0.68173 ES:SE:LP:AF:ID -0.004382:0.006505:0.298562:0.68173:rs9651273
1 1036959 rs11579015 T C . PASS AF=0.083297 ES:SE:LP:AF:ID -0.004674:0.007201:0.285178:0.083297:rs11579015
1 1039098 rs11260595 C A . PASS AF=0.033967 ES:SE:LP:AF:ID 0.006698:0.014089:0.196294:0.033967:rs11260595
1 1040026 rs6671356 T C . PASS AF=0.134423 ES:SE:LP:AF:ID -0.002832:0.006828:0.167502:0.134423:rs6671356
1 1041700 rs6604968 A G . PASS AF=0.186226 ES:SE:LP:AF:ID -0.001932:0.007165:0.103168:0.186226:rs6604968
1 1046164 rs6666280 C T . PASS AF=0.102477 ES:SE:LP:AF:ID -0.003619:0.007087:0.213586:0.102477:rs6666280
1 1048955 rs4970405 A G . PASS AF=0.092497 ES:SE:LP:AF:ID -0.003134:0.006388:0.203671:0.092497:rs4970405
1 1049950 rs12726255 A G . PASS AF=0.100788 ES:SE:LP:AF:ID -0.001115:0.007834:0.0518796:0.100788:rs12726255
1 1053452 rs4970409 G A . PASS AF=0.080496 ES:SE:LP:AF:ID -0.00235:0.007779:0.117028:0.080496:rs4970409
1 1060174 rs7548798 C T . PASS AF=0.337528 ES:SE:LP:AF:ID 0.004812:0.00784:0.266356:0.337528:rs7548798
1 1060608 rs17160824 G A . PASS AF=0.087406 ES:SE:LP:AF:ID -0.002022:0.007975:0.0964407:0.087406:rs17160824