{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST003724,TotalVariants=9483147,VariantsNotRead=0,HarmonisedVariants=9483147,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=27303.0,TotalCases=7647.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-26T21:57:29.889629",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/EBI-a-GCST003724_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/EBI-a-GCST003724.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/EBI-a-GCST003724_data.vcf.gz; Date=Sat Oct 26 22:17:38 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST003724/ebi-a-GCST003724.vcf.gz; Date=Sun May 10 09:52:24 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/EBI-a-GCST003724.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sat Oct 26 22:42:13 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003724/EBI-a-GCST003724.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sat Oct 26 22:43:15 2019
Total time elapsed: 1.0m:1.98s
{
"af_correlation": 0.9463,
"inflation_factor": 1.0891,
"mean_EFFECT": 0.0006,
"n": "-Inf",
"n_snps": 9483147,
"n_clumped_hits": 7,
"n_p_sig": 140,
"n_mono": 0,
"n_ns": 600218,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 81741,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 83 | 0 | 9463631 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 96 | 0 | 29635 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 103 | 0 | 28164 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 9463834 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.663661e+00 | 5.768059e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.851200e+07 | 5.653060e+07 | 828.0000000 | 3.202347e+07 | 6.886660e+07 | 1.143369e+08 | 2.492393e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.826000e-04 | 9.981460e-02 | -112.1150000 | -2.650000e-02 | 1.000000e-03 | 2.880000e-02 | 5.914500e+00 | ▁▁▁▁▇ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 5.848030e-02 | 1.101835e-01 | 0.0204000 | 2.510000e-02 | 3.510000e-02 | 6.570000e-02 | 2.570350e+02 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.854569e-01 | 2.928479e-01 | 0.0000000 | 2.273998e-01 | 4.814997e-01 | 7.389993e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.856200e-01 | 2.928385e-01 | 0.0000000 | 2.274201e-01 | 4.813290e-01 | 7.397444e-01 | 9.998696e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.488821e-01 | 2.623765e-01 | 0.0001000 | 3.530000e-02 | 1.403000e-01 | 3.967000e-01 | 9.905000e-01 | ▇▂▂▁▁ |
numeric | AF_reference | 81741 | 0.9913628 | NA | NA | NA | NA | NA | NA | NA | 2.485562e-01 | 2.535619e-01 | 0.0001997 | 3.973640e-02 | 1.555510e-01 | 3.919730e-01 | 1.000000e+00 | ▇▃▂▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10177 | rs367896724 | A | AC | -0.0182 | 0.1385 | 0.8949999 | 0.8954526 | 0.3895 | 0.4253190 | NA |
1 | 10352 | rs555500075 | T | TA | -0.1287 | 0.1342 | 0.3378999 | 0.3375505 | 0.4117 | 0.4375000 | NA |
1 | 11012 | rs544419019 | C | G | 0.0511 | 0.1943 | 0.7925999 | 0.7925541 | 0.0924 | 0.0880591 | NA |
1 | 13110 | rs540538026 | G | A | -0.3031 | 0.2945 | 0.3034003 | 0.3033847 | 0.0649 | 0.0267572 | NA |
1 | 13116 | rs62635286 | T | G | 0.0117 | 0.1835 | 0.9491999 | 0.9491612 | 0.1678 | 0.0970447 | NA |
1 | 13118 | rs200579949 | A | G | 0.0117 | 0.1835 | 0.9491999 | 0.9491612 | 0.1678 | 0.0970447 | NA |
1 | 13550 | rs554008981 | G | A | 0.4345 | 0.4780 | 0.3632997 | 0.3633523 | 0.0130 | 0.0033946 | NA |
1 | 14464 | rs546169444 | A | T | -0.1405 | 0.1902 | 0.4598996 | 0.4600915 | 0.1849 | 0.0958466 | NA |
1 | 14599 | rs531646671 | T | A | -0.4091 | 0.1868 | 0.0286003 | 0.0285211 | 0.1916 | 0.1475640 | NA |
1 | 14604 | rs541940975 | A | G | -0.4091 | 0.1868 | 0.0286003 | 0.0285211 | 0.1916 | 0.1475640 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51233347 | rs62240044 | T | C | 0.0251 | 0.0296 | 0.3735003 | 0.3964530 | 0.2575 | 0.2134580 | NA |
22 | 51233666 | rs11091014 | C | T | 0.0659 | 0.1396 | 0.9303000 | 0.6368818 | 0.0221 | 0.0970447 | NA |
22 | 51234343 | rs374867791 | G | T | 0.0649 | 0.1396 | 0.9349001 | 0.6420033 | 0.0221 | 0.1002400 | NA |
22 | 51234799 | rs191117135 | G | A | 0.0906 | 0.1060 | 0.4600998 | 0.3927078 | 0.0150 | 0.0059904 | NA |
22 | 51235959 | rs200189535 | T | C | -0.0097 | 0.0358 | 0.7103003 | 0.7864297 | 0.1993 | 0.1996810 | NA |
22 | 51236013 | rs200507571 | A | AT | -0.0121 | 0.0307 | 0.6937005 | 0.6934800 | 0.2527 | 0.1487620 | NA |
22 | 51237063 | rs3896457 | T | C | 0.0326 | 0.0286 | 0.2355000 | 0.2543446 | 0.2737 | 0.2050720 | NA |
22 | 51237712 | rs370652263 | G | A | -0.0989 | 0.0531 | 0.0534601 | 0.0625293 | 0.0540 | 0.0690895 | NA |
22 | 51240820 | rs202228854 | C | T | -0.8860 | 0.5579 | 0.1123001 | 0.1122641 | 0.0273 | 0.1267970 | NA |
22 | 51244237 | rs575160859 | C | T | 0.2061 | 0.2304 | 0.3692003 | 0.3710377 | 0.0122 | 0.0037939 | NA |
1 10177 rs367896724 A AC . PASS AF=0.3895 ES:SE:LP:AF:ID -0.0182:0.1385:0.048177:0.3895:rs367896724
1 10352 rs555500075 T TA . PASS AF=0.4117 ES:SE:LP:AF:ID -0.1287:0.1342:0.471212:0.4117:rs555500075
1 11012 rs544419019 C G . PASS AF=0.0924 ES:SE:LP:AF:ID 0.0511:0.1943:0.100946:0.0924:rs544419019
1 13110 rs540538026 G A . PASS AF=0.0649 ES:SE:LP:AF:ID -0.3031:0.2945:0.517984:0.0649:rs540538026
1 13116 rs62635286 T G . PASS AF=0.1678 ES:SE:LP:AF:ID 0.0117:0.1835:0.0226423:0.1678:rs62635286
1 13118 rs62028691 A G . PASS AF=0.1678 ES:SE:LP:AF:ID 0.0117:0.1835:0.0226423:0.1678:rs62028691
1 13550 rs554008981 G A . PASS AF=0.013 ES:SE:LP:AF:ID 0.4345:0.478:0.439735:0.013:rs554008981
1 14464 rs546169444 A T . PASS AF=0.1849 ES:SE:LP:AF:ID -0.1405:0.1902:0.337337:0.1849:rs546169444
1 14599 rs707680 T A . PASS AF=0.1916 ES:SE:LP:AF:ID -0.4091:0.1868:1.54363:0.1916:rs707680
1 14604 rs541940975 A G . PASS AF=0.1916 ES:SE:LP:AF:ID -0.4091:0.1868:1.54363:0.1916:rs541940975
1 14930 rs6682385 A G . PASS AF=0.5076 ES:SE:LP:AF:ID 0.1525:0.134:0.592949:0.5076:rs6682385
1 15211 rs3982632 T G . PASS AF=0.7036 ES:SE:LP:AF:ID -0.1024:0.1455:0.317314:0.7036:rs3982632
1 15274 rs2758118 A G . PASS AF=0.2716 ES:SE:LP:AF:ID 0.0241:0.14:0.0638383:0.2716:rs2758118
1 15903 rs557514207 G GC . PASS AF=0.4311 ES:SE:LP:AF:ID -0.0737:0.138:0.226872:0.4311:rs557514207
1 18849 rs533090414 C G . PASS AF=0.9837 ES:SE:LP:AF:ID -0.3945:0.383:0.518557:0.9837:rs533090414
1 47159 rs540662756 T C . PASS AF=0.0637 ES:SE:LP:AF:ID 0.1015:0.282:0.143332:0.0637:rs540662756
1 51762 rs559190862 A G . PASS AF=0.0137 ES:SE:LP:AF:ID 0.3332:0.4707:0.319755:0.0137:rs559190862
1 51765 rs575564077 C G . PASS AF=0.0137 ES:SE:LP:AF:ID 0.3332:0.4707:0.319755:0.0137:rs575564077
1 60249 rs547227933 C T . PASS AF=0.0176 ES:SE:LP:AF:ID 0.1657:0.5377:0.120331:0.0176:rs547227933
1 62777 rs3844233 A T . PASS AF=0.4021 ES:SE:LP:AF:ID -0.0613:0.1427:0.175484:0.4021:rs3844233
1 63735 rs61158452 CCTA C . PASS AF=0.347 ES:SE:LP:AF:ID 0.0077:0.1445:0.0189519:0.347:rs201888535
1 66219 rs181028663 A T . PASS AF=0.0139 ES:SE:LP:AF:ID 0.0261:0.5655:0.0163286:0.0139:rs181028663
1 68082 rs367789441 T C . PASS AF=0.0698 ES:SE:LP:AF:ID -0.1724:0.2929:0.254691:0.0698:rs367789441
1 69428 rs140739101 T G . PASS AF=0.0433 ES:SE:LP:AF:ID -0.0046:0.3634:0.00436481:0.0433:rs140739101
1 69761 rs200505207 A T . PASS AF=0.0742 ES:SE:LP:AF:ID -0.13:0.2765:0.194975:0.0742:rs200505207
1 73490 rs558384541 T C . PASS AF=0.0173 ES:SE:LP:AF:ID -0.372:0.5446:0.305746:0.0173:rs558384541
1 74790 rs13328700 C G . PASS AF=0.0377 ES:SE:LP:AF:ID -0.2971:0.3468:0.407046:0.0377:rs13328700
1 74792 rs13328684 G A . PASS AF=0.0377 ES:SE:LP:AF:ID -0.2971:0.3468:0.407046:0.0377:rs13328684
1 81260 rs571136476 C T . PASS AF=0.047 ES:SE:LP:AF:ID -0.3103:0.3692:0.397181:0.047:rs571136476
1 82133 rs550749506 CAA C . PASS AF=0.9882 ES:SE:LP:AF:ID -0.639:0.4348:0.84863:0.9882:rs550749506
1 86028 rs114608975 T C . PASS AF=0.0484 ES:SE:LP:AF:ID -0.8116:0.3792:1.49039:0.0484:rs114608975
1 86331 rs115209712 A G . PASS AF=0.1098 ES:SE:LP:AF:ID -0.3094:0.241:0.700711:0.1098:rs115209712
1 88169 rs940550 C T . PASS AF=0.1783 ES:SE:LP:AF:ID -0.2064:0.1852:0.576918:0.1783:rs940550
1 88172 rs940551 G A . PASS AF=0.0685 ES:SE:LP:AF:ID -0.2557:0.3051:0.39599:0.0685:rs940551
1 88177 rs143215837 G C . PASS AF=0.0682 ES:SE:LP:AF:ID -0.2763:0.3069:0.43427:0.0682:rs143215837
1 88316 rs113759966 G A . PASS AF=0.0687 ES:SE:LP:AF:ID -0.2486:0.3027:0.38563:0.0687:rs113759966
1 91421 rs28619159 T C . PASS AF=0.0117 ES:SE:LP:AF:ID 0.4157:0.4838:0.408713:0.0117:rs28619159
1 99687 rs139153227 C T . PASS AF=0.0641 ES:SE:LP:AF:ID -0.2634:0.3138:0.396639:0.0641:rs139153227
1 104186 rs4288537 T C . PASS AF=0.6664 ES:SE:LP:AF:ID -0.09:0.1378:0.289713:0.6664:rs4288537
1 108929 rs62642118 C G . PASS AF=0.0114 ES:SE:LP:AF:ID -1.5368:1.0129:0.888737:0.0114:rs62642118
1 115729 rs199999500 GCACA G . PASS AF=0.0195 ES:SE:LP:AF:ID -0.6247:0.5488:0.59346:0.0195:rs199999500
1 122872 rs62642125 T G . PASS AF=0.2351 ES:SE:LP:AF:ID -0.0252:0.1668:0.0555667:0.2351:rs62642125
1 125271 rs3871807 C T . PASS AF=0.9712 ES:SE:LP:AF:ID -0.4963:0.2912:1.05443:0.9712:rs3871807
1 129010 rs377161483 AATG A . PASS AF=0.5609 ES:SE:LP:AF:ID 0.0833:0.1378:0.263205:0.5609:rs377161483
1 135195 rs554762511 A G . PASS AF=0.0117 ES:SE:LP:AF:ID -1.6501:1.1485:0.821599:0.0117:rs554762511
1 138593 rs375595668 G T . PASS AF=0.1031 ES:SE:LP:AF:ID -0.2789:0.2422:0.602755:0.1031:rs375595668
1 234408 rs111659307 A G . PASS AF=0.021 ES:SE:LP:AF:ID -0.2431:0.5212:0.19321:0.021:rs111659307
1 249652 rs538729150 G C . PASS AF=0.0169 ES:SE:LP:AF:ID -0.0583:0.3062:0.0654511:0.0169:rs538729150
1 255633 rs375136935 A G . PASS AF=0.0552 ES:SE:LP:AF:ID 0.3383:0.2916:0.608888:0.0552:rs375136935
1 255923 rs199745078 G GTC . PASS AF=0.1136 ES:SE:LP:AF:ID 0.0358:0.2166:0.0611802:0.1136:rs199745078