{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST003392,TotalVariants=9481847,VariantsNotRead=0,HarmonisedVariants=9481845,VariantsNotHarmonised=2,SwitchedAlleles=4,TotalControls=63775.0,StudyType=Continuous>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-27T07:24:08.124225",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/EBI-a-GCST003392_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/EBI-a-GCST003392.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/EBI-a-GCST003392_data.vcf.gz; Date=Sun Oct 27 07:38:35 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST003392/ebi-a-GCST003392.vcf.gz; Date=Sun May 10 11:36:20 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/EBI-a-GCST003392.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sun Oct 27 08:02:20 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST003392/EBI-a-GCST003392.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sun Oct 27 08:03:22 2019
Total time elapsed: 1.0m:2.02s
{
"af_correlation": 0.9423,
"inflation_factor": 1.0475,
"mean_EFFECT": -0,
"n": "-Inf",
"n_snps": 9481845,
"n_clumped_hits": 1,
"n_p_sig": 34,
"n_mono": 0,
"n_ns": 1083062,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 195792,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.000000 | 3 | 58 | 0 | 9447187 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.000000 | 1 | 45 | 0 | 46862 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.000000 | 1 | 45 | 0 | 28940 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 9460401 | 0.000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 8.669292e+00 | 5.775284e+00 | 1.0000000 | 4.000000e+00 | 8.000000e+00 | 1.300000e+01 | 2.200000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 7.864280e+07 | 5.657574e+07 | 302.0000000 | 3.196346e+07 | 6.910224e+07 | 1.144941e+08 | 2.492393e+08 | ▇▆▅▂▁ |
numeric | EFFECT | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | -4.190000e-05 | 1.078850e-02 | -0.1265310 | -5.250800e-03 | -5.080000e-05 | 5.166700e-03 | 1.370990e-01 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 9.157300e-03 | 5.285400e-03 | 0.0040153 | 5.077900e-03 | 6.819400e-03 | 1.177950e-02 | 4.194690e-02 | ▇▂▁▁▁ |
numeric | PVAL | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 4.890728e-01 | 2.915406e-01 | 0.0000000 | 2.300001e-01 | 4.899999e-01 | 7.400005e-01 | 1.000000e+00 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 4.890722e-01 | 2.915158e-01 | 0.0000000 | 2.341405e-01 | 4.851936e-01 | 7.412909e-01 | 9.999999e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.000000 | NA | NA | NA | NA | NA | NA | NA | 2.611296e-01 | 2.628873e-01 | 0.0100010 | 4.380300e-02 | 1.581010e-01 | 4.157400e-01 | 9.899990e-01 | ▇▂▂▁▁ |
numeric | AF_reference | 195792 | 0.979304 | NA | NA | NA | NA | NA | NA | NA | 2.605844e-01 | 2.537652e-01 | 0.0000000 | 4.972040e-02 | 1.737220e-01 | 4.109420e-01 | 1.000000e+00 | ▇▃▂▁▁ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10177 | rs367896724 | A | AC | -0.0045508 | 0.0066609 | 0.4899999 | 0.4944774 | 0.402314 | 0.4253190 | NA |
1 | 10352 | rs555500075 | T | TA | -0.0081098 | 0.0069301 | 0.2399999 | 0.2419115 | 0.390095 | 0.4375000 | NA |
1 | 11012 | rs544419019 | C | G | -0.0018841 | 0.0115483 | 0.8700001 | 0.8703986 | 0.086367 | 0.0880591 | NA |
1 | 13110 | rs540538026 | G | A | 0.0033456 | 0.0147842 | 0.8200001 | 0.8209694 | 0.059597 | 0.0267572 | NA |
1 | 13116 | rs62635286 | T | G | 0.0007276 | 0.0090807 | 0.9400001 | 0.9361373 | 0.188535 | 0.0970447 | NA |
1 | 13118 | rs200579949 | A | G | 0.0007276 | 0.0090807 | 0.9400001 | 0.9361373 | 0.188535 | 0.0970447 | NA |
1 | 13273 | rs531730856 | G | C | -0.0104917 | 0.0104064 | 0.3100002 | 0.3133600 | 0.133959 | 0.0950479 | NA |
1 | 14464 | rs546169444 | A | T | -0.0057434 | 0.0094689 | 0.5400003 | 0.5441486 | 0.155098 | 0.0958466 | NA |
1 | 14599 | rs531646671 | T | A | 0.0036009 | 0.0086883 | 0.6800001 | 0.6785437 | 0.193476 | 0.1475640 | NA |
1 | 14604 | rs541940975 | A | G | 0.0036009 | 0.0086883 | 0.6800001 | 0.6785437 | 0.193476 | 0.1475640 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51234343 | rs374867791 | G | T | 0.0207182 | 0.0208482 | 0.3200000 | 0.3203376 | 0.021048 | 0.1002400 | NA |
22 | 51234799 | rs191117135 | G | A | 0.0265410 | 0.0210541 | 0.2099999 | 0.2074495 | 0.015260 | 0.0059904 | NA |
22 | 51235959 | rs200189535 | T | C | 0.0035506 | 0.0068102 | 0.5999997 | 0.6021100 | 0.192540 | 0.1996810 | NA |
22 | 51235979 | rs62240045 | G | A | -0.0050866 | 0.0074545 | 0.5000000 | 0.4950204 | 0.260373 | 0.2400160 | NA |
22 | 51236013 | rs200507571 | A | AT | 0.0043461 | 0.0057942 | 0.4500005 | 0.4532113 | 0.252329 | 0.1487620 | NA |
22 | 51237063 | rs3896457 | T | C | -0.0061560 | 0.0055897 | 0.2700001 | 0.2707685 | 0.294328 | 0.2050720 | NA |
22 | 51237364 | rs200607599 | A | G | -0.0377196 | 0.0229992 | 0.1000000 | 0.1009969 | 0.015952 | 0.0187700 | NA |
22 | 51237712 | rs370652263 | G | A | -0.0139551 | 0.0106905 | 0.1900002 | 0.1917656 | 0.055591 | 0.0690895 | NA |
22 | 51240820 | rs202228854 | C | T | 0.0199202 | 0.0187742 | 0.2900000 | 0.2886712 | 0.027245 | 0.1267970 | NA |
22 | 51244237 | rs575160859 | C | T | -0.0089389 | 0.0283167 | 0.7499995 | 0.7522493 | 0.013418 | 0.0037939 | NA |
1 10177 rs367896724 A AC . PASS AF=0.402314 ES:SE:LP:AF:ID -0.00455078:0.00666093:0.309804:0.402314:rs367896724
1 10352 rs555500075 T TA . PASS AF=0.390095 ES:SE:LP:AF:ID -0.00810977:0.00693011:0.619789:0.390095:rs555500075
1 11012 rs544419019 C G . PASS AF=0.086367 ES:SE:LP:AF:ID -0.00188413:0.0115483:0.0604807:0.086367:rs544419019
1 13110 rs540538026 G A . PASS AF=0.059597 ES:SE:LP:AF:ID 0.00334564:0.0147842:0.0861861:0.059597:rs540538026
1 13116 rs62635286 T G . PASS AF=0.188535 ES:SE:LP:AF:ID 0.000727598:0.00908071:0.0268721:0.188535:rs62635286
1 13118 rs62028691 A G . PASS AF=0.188535 ES:SE:LP:AF:ID 0.000727598:0.00908071:0.0268721:0.188535:rs62028691
1 13273 rs531730856 G C . PASS AF=0.133959 ES:SE:LP:AF:ID -0.0104917:0.0104064:0.508638:0.133959:rs531730856
1 14464 rs546169444 A T . PASS AF=0.155098 ES:SE:LP:AF:ID -0.0057434:0.00946894:0.267606:0.155098:rs546169444
1 14599 rs707680 T A . PASS AF=0.193476 ES:SE:LP:AF:ID 0.00360086:0.00868826:0.167491:0.193476:rs707680
1 14604 rs541940975 A G . PASS AF=0.193476 ES:SE:LP:AF:ID 0.00360086:0.00868826:0.167491:0.193476:rs541940975
1 14930 rs6682385 A G . PASS AF=0.469162 ES:SE:LP:AF:ID 0.00604503:0.00678239:0.431798:0.469162:rs6682385
1 14933 rs199856693 G A . PASS AF=0.047152 ES:SE:LP:AF:ID 0.00158274:0.0161103:0.0362122:0.047152:rs199856693
1 15211 rs3982632 T G . PASS AF=0.741111 ES:SE:LP:AF:ID -0.00596082:0.00777292:0.356547:0.741111:rs3982632
1 15820 rs2691315 G T . PASS AF=0.27174 ES:SE:LP:AF:ID 0.0101415:0.00795189:0.69897:0.27174:rs2691315
1 15903 rs557514207 G GC . PASS AF=0.408683 ES:SE:LP:AF:ID -0.00198132:0.00662145:0.119186:0.408683:rs557514207
1 16949 rs199745162 A C . PASS AF=0.020279 ES:SE:LP:AF:ID 0.0172853:0.0238933:0.327902:0.020279:rs199745162
1 18849 rs533090414 C G . PASS AF=0.974295 ES:SE:LP:AF:ID -0.000333152:0.0201051:0.00436481:0.974295:rs533090414
1 30923 rs806731 G T . PASS AF=0.903876 ES:SE:LP:AF:ID 0.000200262:0.0119506:0.00436481:0.903876:rs806731
1 47159 rs540662756 T C . PASS AF=0.065472 ES:SE:LP:AF:ID 0.000516338:0.0141865:0.0132283:0.065472:rs540662756
1 49298 rs10399793 T C . PASS AF=0.836907 ES:SE:LP:AF:ID 0.00938659:0.00948532:0.49485:0.836907:rs10399793
1 49554 rs539322794 A G . PASS AF=0.097473 ES:SE:LP:AF:ID -0.00771457:0.0117225:0.29243:0.097473:rs539322794
1 51479 rs116400033 T A . PASS AF=0.209986 ES:SE:LP:AF:ID 0.00160209:0.00835118:0.0705811:0.209986:rs116400033
1 52238 rs2691277 T G . PASS AF=0.976797 ES:SE:LP:AF:ID 0.0105561:0.0245501:0.173925:0.976797:rs2691277
1 54490 rs141149254 G A . PASS AF=0.151422 ES:SE:LP:AF:ID -0.00167812:0.00936957:0.0655015:0.151422:rs141149254
1 54712 rs552304420 T C . PASS AF=0.01064 ES:SE:LP:AF:ID -0.0034203:0.00630157:0.229148:0.01064:rs552304420
1 54716 rs569128616 C T . PASS AF=0.42454 ES:SE:LP:AF:ID -0.0137921:0.00706044:1.29243:0.42454:rs569128616
1 55164 rs3091274 C A . PASS AF=0.981509 ES:SE:LP:AF:ID 0.00537332:0.026904:0.0757207:0.981509:rs3091274
1 55326 rs3107975 T C . PASS AF=0.01603 ES:SE:LP:AF:ID 0.0248986:0.0289904:0.408935:0.01603:rs3107975
1 55545 rs28396308 C T . PASS AF=0.261517 ES:SE:LP:AF:ID -0.00275161:0.00790048:0.136677:0.261517:rs28396308
1 57292 rs201418760 C T . PASS AF=0.02082 ES:SE:LP:AF:ID 0.0288052:0.0251952:0.60206:0.02082:rs201418760
1 58814 rs114420996 G A . PASS AF=0.094084 ES:SE:LP:AF:ID -0.00703133:0.0119751:0.251812:0.094084:rs114420996
1 59040 rs62637815 T C . PASS AF=0.091395 ES:SE:LP:AF:ID -0.00176896:0.012043:0.0555173:0.091395:rs62637815
1 60249 rs547227933 C T . PASS AF=0.01879 ES:SE:LP:AF:ID 0.0409042:0.0244997:1.02228:0.01879:rs547227933
1 60351 rs62637817 A G . PASS AF=0.084746 ES:SE:LP:AF:ID -0.00399361:0.0124292:0.124939:0.084746:rs62637817
1 61920 rs62637820 G A . PASS AF=0.030102 ES:SE:LP:AF:ID -0.0149515:0.019922:0.346787:0.030102:rs62637820
1 62777 rs3844233 A T . PASS AF=0.442341 ES:SE:LP:AF:ID -0.00843564:0.0067837:0.677781:0.442341:rs3844233
1 63268 rs28664618 T C . PASS AF=0.389478 ES:SE:LP:AF:ID -0.0111335:0.00723028:0.920819:0.389478:rs28664618
1 63671 rs80011619 G A . PASS AF=0.160843 ES:SE:LP:AF:ID -0.0013578:0.00915964:0.0555173:0.160843:rs80011619
1 63735 rs61158452 CCTA C . PASS AF=0.308226 ES:SE:LP:AF:ID 0.0131122:0.00731101:1.13668:0.308226:rs201888535
1 64649 rs181431124 A C . PASS AF=0.027235 ES:SE:LP:AF:ID -0.0135569:0.0207958:0.29243:0.027235:rs181431124
1 64931 rs62639104 G A . PASS AF=0.083092 ES:SE:LP:AF:ID -0.0054557:0.0125756:0.180456:0.083092:rs62639104
1 66219 rs181028663 A T . PASS AF=0.018879 ES:SE:LP:AF:ID -0.0110774:0.0234231:0.19382:0.018879:rs181028663
1 68082 rs367789441 T C . PASS AF=0.072252 ES:SE:LP:AF:ID -0.00266841:0.0133316:0.0757207:0.072252:rs367789441
1 69428 rs140739101 T G . PASS AF=0.036251 ES:SE:LP:AF:ID -0.017649:0.0189251:0.455932:0.036251:rs140739101
1 69761 rs200505207 A T . PASS AF=0.075779 ES:SE:LP:AF:ID 0.00532292:0.0130562:0.167491:0.075779:rs200505207
1 69897 rs200676709 T C . PASS AF=0.742291 ES:SE:LP:AF:ID 0.0160314:0.00801374:1.34679:0.742291:rs200676709
1 72526 rs547237130 A G . PASS AF=0.041676 ES:SE:LP:AF:ID -0.0107322:0.0177575:0.259637:0.041676:rs547237130
1 73490 rs558384541 T C . PASS AF=0.017948 ES:SE:LP:AF:ID 0.00270295:0.0264925:0.0362122:0.017948:rs558384541
1 74790 rs13328700 C G . PASS AF=0.035774 ES:SE:LP:AF:ID -0.000207253:0.018291:0.00436481:0.035774:rs13328700
1 74792 rs13328684 G A . PASS AF=0.035774 ES:SE:LP:AF:ID -0.000207253:0.018291:0.00436481:0.035774:rs13328684