Summary

Summary {data-width=650}

Manhattan plot

manhattan_plot

manhattan_plot

QQ plot

qq_plot

qq_plot

AF plot

af_plot

af_plot

P-Z plot

pz_plot

pz_plot

beta_std plot

beta_std_plot

beta_std_plot

Metadata

{
    "fileformat": "VCFv4.2",
    "FILTER": "<ID=PASS,Description=\"All filters passed\">",
    "FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
    "FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
    "FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
    "FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
    "FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
    "FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
    "FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
    "FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
    "FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
    "INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
    "INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
    "INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
    "META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
    "META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
    "META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
    "META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
    "META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
    "META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
    "META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
    "META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
    "SAMPLE": "<ID=EBI-a-GCST001837,TotalVariants=1374543,VariantsNotRead=0,HarmonisedVariants=1374543,VariantsNotHarmonised=0,SwitchedAlleles=0,TotalControls=12441.0,StudyType=Continuous>",
    "contig": "<ID=1,length=249250621>",
    "contig.1": "<ID=2,length=243199373>",
    "contig.2": "<ID=3,length=198022430>",
    "contig.3": "<ID=4,length=191154276>",
    "contig.4": "<ID=5,length=180915260>",
    "contig.5": "<ID=6,length=171115067>",
    "contig.6": "<ID=7,length=159138663>",
    "contig.7": "<ID=8,length=146364022>",
    "contig.8": "<ID=9,length=141213431>",
    "contig.9": "<ID=10,length=135534747>",
    "contig.10": "<ID=11,length=135006516>",
    "contig.11": "<ID=12,length=133851895>",
    "contig.12": "<ID=13,length=115169878>",
    "contig.13": "<ID=14,length=107349540>",
    "contig.14": "<ID=15,length=102531392>",
    "contig.15": "<ID=16,length=90354753>",
    "contig.16": "<ID=17,length=81195210>",
    "contig.17": "<ID=18,length=78077248>",
    "contig.18": "<ID=19,length=59128983>",
    "contig.19": "<ID=20,length=63025520>",
    "contig.20": "<ID=21,length=48129895>",
    "contig.21": "<ID=22,length=51304566>",
    "contig.22": "<ID=X,length=155270560>",
    "contig.23": "<ID=Y,length=59373566>",
    "contig.24": "<ID=MT,length=16569>",
    "contig.25": "<ID=GL000207.1,length=4262>",
    "contig.26": "<ID=GL000226.1,length=15008>",
    "contig.27": "<ID=GL000229.1,length=19913>",
    "contig.28": "<ID=GL000231.1,length=27386>",
    "contig.29": "<ID=GL000210.1,length=27682>",
    "contig.30": "<ID=GL000239.1,length=33824>",
    "contig.31": "<ID=GL000235.1,length=34474>",
    "contig.32": "<ID=GL000201.1,length=36148>",
    "contig.33": "<ID=GL000247.1,length=36422>",
    "contig.34": "<ID=GL000245.1,length=36651>",
    "contig.35": "<ID=GL000197.1,length=37175>",
    "contig.36": "<ID=GL000203.1,length=37498>",
    "contig.37": "<ID=GL000246.1,length=38154>",
    "contig.38": "<ID=GL000249.1,length=38502>",
    "contig.39": "<ID=GL000196.1,length=38914>",
    "contig.40": "<ID=GL000248.1,length=39786>",
    "contig.41": "<ID=GL000244.1,length=39929>",
    "contig.42": "<ID=GL000238.1,length=39939>",
    "contig.43": "<ID=GL000202.1,length=40103>",
    "contig.44": "<ID=GL000234.1,length=40531>",
    "contig.45": "<ID=GL000232.1,length=40652>",
    "contig.46": "<ID=GL000206.1,length=41001>",
    "contig.47": "<ID=GL000240.1,length=41933>",
    "contig.48": "<ID=GL000236.1,length=41934>",
    "contig.49": "<ID=GL000241.1,length=42152>",
    "contig.50": "<ID=GL000243.1,length=43341>",
    "contig.51": "<ID=GL000242.1,length=43523>",
    "contig.52": "<ID=GL000230.1,length=43691>",
    "contig.53": "<ID=GL000237.1,length=45867>",
    "contig.54": "<ID=GL000233.1,length=45941>",
    "contig.55": "<ID=GL000204.1,length=81310>",
    "contig.56": "<ID=GL000198.1,length=90085>",
    "contig.57": "<ID=GL000208.1,length=92689>",
    "contig.58": "<ID=GL000191.1,length=106433>",
    "contig.59": "<ID=GL000227.1,length=128374>",
    "contig.60": "<ID=GL000228.1,length=129120>",
    "contig.61": "<ID=GL000214.1,length=137718>",
    "contig.62": "<ID=GL000221.1,length=155397>",
    "contig.63": "<ID=GL000209.1,length=159169>",
    "contig.64": "<ID=GL000218.1,length=161147>",
    "contig.65": "<ID=GL000220.1,length=161802>",
    "contig.66": "<ID=GL000213.1,length=164239>",
    "contig.67": "<ID=GL000211.1,length=166566>",
    "contig.68": "<ID=GL000199.1,length=169874>",
    "contig.69": "<ID=GL000217.1,length=172149>",
    "contig.70": "<ID=GL000216.1,length=172294>",
    "contig.71": "<ID=GL000215.1,length=172545>",
    "contig.72": "<ID=GL000205.1,length=174588>",
    "contig.73": "<ID=GL000219.1,length=179198>",
    "contig.74": "<ID=GL000224.1,length=179693>",
    "contig.75": "<ID=GL000223.1,length=180455>",
    "contig.76": "<ID=GL000195.1,length=182896>",
    "contig.77": "<ID=GL000212.1,length=186858>",
    "contig.78": "<ID=GL000222.1,length=186861>",
    "contig.79": "<ID=GL000200.1,length=187035>",
    "contig.80": "<ID=GL000193.1,length=189789>",
    "contig.81": "<ID=GL000194.1,length=191469>",
    "contig.82": "<ID=GL000225.1,length=211173>",
    "contig.83": "<ID=GL000192.1,length=547496>",
    "file_date": "2019-10-26T09:29:46.504813",
    "gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/EBI-a-GCST001837_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
    "reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
    "bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/EBI-a-GCST001837.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/EBI-a-GCST001837_data.vcf.gz; Date=Sat Oct 26 09:44:36 2019",
    "bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
    "bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST001837/ebi-a-GCST001837.vcf.gz; Date=Sat May  9 18:04:44 2020"
}
 

LDSC

*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call: 
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/EBI-a-GCST001837.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ 

Beginning analysis at Sat Oct 26 10:06:33 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST001837/EBI-a-GCST001837.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
  File "./ldsc/ldsc.py", line 647, in <module>
    sumstats.estimate_h2(args, log)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
    args, log, args.h2)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
    sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
    sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
    x = read_vcf(fh, alleles, slh)
  File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
    with gzip.open(slh) as f:
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
    return GzipFile(filename, mode, compresslevel)
  File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
    fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'

Analysis finished at Sat Oct 26 10:06:41 2019
Total time elapsed: 8.7s

QC metrics

Metrics

Metrics

{
    "af_correlation": 0.9013,
    "inflation_factor": 1.0841,
    "mean_EFFECT": -0,
    "n": "-Inf",
    "n_snps": 1374543,
    "n_clumped_hits": 0,
    "n_p_sig": 0,
    "n_mono": 9,
    "n_ns": 0,
    "n_mac": 0,
    "is_snpid_unique": false,
    "n_miss_EFFECT": 0,
    "n_miss_SE": 0,
    "n_miss_PVAL": 0,
    "n_miss_AF": 99,
    "n_miss_AF_reference": 8797,
    "n_est": "NA",
    "ratio_se_n": "NA",
    "mean_diff": "NaN",
    "ratio_diff": "NaN",
    "sd_y_est1": "NaN",
    "sd_y_est2": "NA",
    "r2_sum1": 0,
    "r2_sum2": 0,
    "r2_sum3": 0,
    "r2_sum4": 0,
    "ldsc_nsnp_merge_refpanel_ld": "NA",
    "ldsc_nsnp_merge_regression_ld": "NA",
    "ldsc_observed_scale_h2_beta": "NA",
    "ldsc_observed_scale_h2_se": "NA",
    "ldsc_intercept_beta": "NA",
    "ldsc_intercept_se": "NA",
    "ldsc_lambda_gc": "NA",
    "ldsc_mean_chisq": "NA",
    "ldsc_ratio": "NA"
}
 

Flags

name value
af_correlation FALSE
inflation_factor FALSE
n TRUE
is_snpid_non_unique TRUE
mean_EFFECT_nonfinite FALSE
mean_EFFECT_05 FALSE
mean_EFFECT_01 FALSE
mean_chisq TRUE
n_p_sig FALSE
miss_EFFECT FALSE
miss_SE FALSE
miss_PVAL FALSE
ldsc_ratio TRUE
ldsc_intercept_beta TRUE
n_clumped_hits FALSE
r2_sum1 FALSE
r2_sum2 FALSE
r2_sum3 FALSE
r2_sum4 FALSE

Definitions

General metrics

  • af_correlation: Correlation coefficient between AF and AF_reference.
  • inflation_factor (lambda): Genomic inflation factor.
  • mean_EFFECT: Mean of EFFECT size.
  • n: Maximum value of reported sample size across all SNPs, \(n\).
  • n_clumped_hits: Number of clumped hits.
  • n_snps: Number of SNPs
  • n_p_sig: Number of SNPs with pvalue below 5e-8.
  • n_mono: Number of monomorphic (MAF == 1 or MAF == 0) SNPs.
  • n_ns: Number of SNPs with nonsense values:
    • alleles other than A, C, G or T.
    • P-values < 0 or > 1.
    • negative or infinite standard errors (<= 0 or = Infinity).
    • infinite beta estimates or allele frequencies < 0 or > 1.
  • n_mac: Number of cases where MAC (\(2 \times N \times MAF\)) is less than 6.
  • is_snpid_unique: true if the combination of ID REF ALT is unique and therefore no duplication in snpid.
  • n_miss_<*>: Number of NA observations for <*> column.

se_n metrics

  • n_est: Estimated sample size value, \(\widehat{n}\).
  • ratio_se_n: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.
  • mean_diff: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
    • \(\widehat{\beta_j^{std}} = \sqrt{\frac{{z}_j^2 / ({z}_j^2 + n -2)}{2 \times {MAF}_j \times (1 - {MAF}_j)}} \times sign({z}_j)\),
    • \({z}_j = \frac{\beta_j}{{se}_j}\),
    • and \(\beta_j\) is the reported effect size.
  • ratio_diff: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff and the mean of diff2 (expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
    • \(\texttt{mean_diff2} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta^{\prime}_j}{\texttt{n_snps}}\)
    • \(\beta^{\prime}_j = \frac{\beta_j}{\widehat{\texttt{sd2}}_{y}}\)
  • sd_y_est1: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
    • \(\widehat{\texttt{sd1}}_{y} = \frac{\sqrt{n} \times median({se}_j)}{C}\),
    • \(C = median(\frac{1}{\sqrt{2 \times {MAF}_j \times (1 - {MAF}_j)}})\),
    • and \({se}_j\) is the reported standard error.
  • sd_y_est2: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
    • \(\widehat{\texttt{sd2}}_{y} = median(\widehat{sd_j})\),
    • \(\widehat{sd_j} = \frac{\beta_j}{\widehat{\beta_j^{std}}}\),

r2 metrics

Sum of variance explained, calculated from the clumped top hits sample.

  • r2_sum<*>: r2 statistics under various assumptions
    • 1: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).
    • 2: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),
    • 3: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),
    • 4: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).

LDSC metrics

Metrics from LD regression

  • ldsc_nsnp_merge_refpanel_ld: Number of remaining SNPs after merging with reference panel LD.
  • ldsc_nsnp_merge_regression_ld: Number of remaining SNPs after merging with regression SNP LD.
  • ldsc_observed_scale_h2_{beta,se} Coefficient value and SE for total observed scale h2.
  • ldsc_intercept_{beta,se}: Coefficient value and SE for intercept. Intercept is expected to be 1.
  • ldsc_lambda_gc: Lambda GC statistics.
  • ldsc_mean_chisq: Mean \(\chi^2\) statistics.
  • ldsc_ratio: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).

Flags

When a metric needs attention, the flag should return TRUE.

  • af_correlation: abs(af_correlation) < 0.7.
  • inflation_factor: inflation_factor > 1.2.
  • n: n (max reported sample size) < 10000.
  • is_snpid_non_unique: NOT is_snpid_unique.
  • mean_EFFECT_nonfinite: mean(EFFECT) is NA, NaN, or Inf.
  • mean_EFFECT_05: abs(mean(EFFECT)) > 0.5.
  • mean_EFFECT_01: abs(mean(EFFECT)) > 0.1.
  • mean_chisq: ldsc_mean_chisq > 1.3 or ldsc_mean_chisq < 0.7.
  • n_p_sig: n_p_sig > 1000.
  • miss_<*>: n_miss_<*> / n_snps > 0.01.
  • ldsc_ratio: ldsc_ratio > 0.5
  • ldsc_intercept_beta: ldsc_intercept_beta > 1.5
  • n_clumped_hits: n_clumped_hits > 1000
  • r2_sum<*>: r2_sum<*> > 0.5

Plots

  • Manhattan plot
    • Red line: \(-log_{10}^{5 \times 10^{-8}}\)
    • Blue line: \(-log_{10}^{5 \times 10^{-5}}\)
  • QQ plot
  • AF plot
  • P-Z plot
  • beta_std plot: Scatter plot between \(\widehat{\beta_j^{std}}\) and \(\beta_j\)

Diagnostics

Details

Summary stats

skim_type skim_variable n_missing complete_rate character.min character.max character.empty character.n_unique character.whitespace logical.mean logical.count numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
character ID 0 1.0000000 3 33 0 1371260 0 NA NA NA NA NA NA NA NA NA NA
character REF 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
character ALT 0 1.0000000 1 1 0 4 0 NA NA NA NA NA NA NA NA NA NA
logical N 1371262 0.0000000 NA NA NA NA NA NaN : NA NA NA NA NA NA NA NA
numeric CHROM 0 1.0000000 NA NA NA NA NA NA NA 8.412544e+00 5.579434e+00 1.0000e+00 4.000000e+00 7.000000e+00 1.200000e+01 2.300000e+01 ▇▅▅▂▁
numeric POS 0 1.0000000 NA NA NA NA NA NA NA 8.007957e+07 5.496651e+07 4.7011e+04 3.472252e+07 7.189479e+07 1.148189e+08 2.491707e+08 ▇▇▅▂▁
numeric EFFECT 0 1.0000000 NA NA NA NA NA NA NA -3.670000e-05 1.856390e-02 -1.9170e-01 -1.130000e-02 -1.000000e-04 1.120000e-02 2.000000e-01 ▁▁▇▁▁
numeric SE 0 1.0000000 NA NA NA NA NA NA NA 1.700080e-02 5.783500e-03 1.2600e-02 1.340000e-02 1.480000e-02 1.840000e-02 6.760000e-02 ▇▁▁▁▁
numeric PVAL 0 1.0000000 NA NA NA NA NA NA NA 4.860716e-01 2.913854e-01 3.6000e-06 2.300001e-01 4.824996e-01 7.385009e-01 9.993000e-01 ▇▇▇▇▇
numeric PVAL_ztest 0 1.0000000 NA NA NA NA NA NA NA 4.860711e-01 2.913831e-01 3.8000e-06 2.298003e-01 4.824983e-01 7.388827e-01 9.987172e-01 ▇▇▇▇▇
numeric AF 99 0.9999278 NA NA NA NA NA NA NA 3.850052e-01 2.554785e-01 8.0000e-03 1.670000e-01 3.330000e-01 5.760000e-01 1.000000e+00 ▇▇▅▃▂
numeric AF_reference 8797 0.9935847 NA NA NA NA NA NA NA 3.856396e-01 2.402397e-01 1.9970e-04 1.837060e-01 3.380590e-01 5.638980e-01 9.970050e-01 ▇▇▆▃▂

Head and tail

CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
1 1018562 rs9442371 C T 0.0134 0.0131 0.3043000 0.3063548 0.592 0.530152 NA
1 1018704 rs9442372 A G 0.0127 0.0131 0.3309002 0.3323129 0.602 0.611022 NA
1 1040026 rs6671356 T C 0.0101 0.0195 0.6028996 0.6044940 0.075 0.282947 NA
1 1048955 rs4970405 A G 0.0117 0.0208 0.5737002 0.5737754 0.052 0.110623 NA
1 1049950 rs12726255 A G 0.0043 0.0189 0.8208001 0.8200247 0.067 0.289736 NA
1 1053452 rs4970409 G A 0.0063 0.0208 0.7614002 0.7619778 0.050 0.136182 NA
1 1097335 rs9442385 T G -0.0257 0.0263 0.3291001 0.3284769 0.942 0.834665 NA
1 1129672 rs11260554 G T -0.0034 0.0201 0.8645000 0.8656753 0.125 0.254393 NA
1 1156131 rs2887286 T C 0.0018 0.0179 0.9218000 0.9199008 0.183 0.511182 NA
1 1158277 rs3813199 G A 0.0157 0.0217 0.4681004 0.4693713 0.100 0.124201 NA
CHROM POS ID REF ALT EFFECT SE PVAL PVAL_ztest AF AF_reference N
22 51101938 rs6010044 A C 0.0147 0.0161 0.3597999 0.3612197 0.245 0.2390180 NA
22 51103692 rs8138460 A G 0.0149 0.0129 0.2471997 0.2480746 0.442 0.2951280 NA
22 51104680 rs9616906 G A 0.0176 0.0128 0.1695001 0.1691314 0.450 0.2689700 NA
22 51105556 rs9616812 C T 0.0093 0.0128 0.4685004 0.4674940 0.483 0.3628190 NA
22 51109992 rs9628185 T C 0.0084 0.0128 0.5117997 0.5116633 0.483 0.4053510 NA
22 51150473 rs5770820 G A -0.0471 0.0155 0.0024160 0.0023759 0.190 0.2462060 NA
22 51163138 rs715586 C T 0.0352 0.0184 0.0557096 0.0557425 0.150 0.0902556 NA
22 51175626 rs3810648 A G 0.0681 0.0280 0.0149599 0.0150098 0.067 0.1084270 NA
23 51666786 rs14115 A G 0.0735 0.0315 0.0194998 0.0196307 0.025 NA NA
23 118495837 rs12882977 G A 0.0135 0.0128 0.2939998 0.2915683 0.509 0.2307280 NA

bcf preview

1   1018562 rs9442371   C   T   .   PASS    AF=0.592    ES:SE:LP:AF:ID  0.0134:0.0131:0.516698:0.592:rs9442371
1   1018704 rs9442372   A   G   .   PASS    AF=0.602    ES:SE:LP:AF:ID  0.0127:0.0131:0.480303:0.602:rs9442372
1   1040026 rs6671356   T   C   .   PASS    AF=0.075    ES:SE:LP:AF:ID  0.0101:0.0195:0.219755:0.075:rs6671356
1   1048955 rs4970405   A   G   .   PASS    AF=0.052    ES:SE:LP:AF:ID  0.0117:0.0208:0.241315:0.052:rs4970405
1   1049950 rs12726255  A   G   .   PASS    AF=0.067    ES:SE:LP:AF:ID  0.0043:0.0189:0.0857626:0.067:rs12726255
1   1053452 rs4970409   G   A   .   PASS    AF=0.05 ES:SE:LP:AF:ID  0.0063:0.0208:0.118387:0.05:rs4970409
1   1097335 rs9442385   T   G   .   PASS    AF=0.942    ES:SE:LP:AF:ID  -0.0257:0.0263:0.482672:0.942:rs9442385
1   1129672 rs11260554  G   T   .   PASS    AF=0.125    ES:SE:LP:AF:ID  -0.0034:0.0201:0.063235:0.125:rs11260554
1   1156131 rs2887286   T   C   .   PASS    AF=0.183    ES:SE:LP:AF:ID  0.0018:0.0179:0.0353633:0.183:rs2887286
1   1158277 rs3813199   G   A   .   PASS    AF=0.1  ES:SE:LP:AF:ID  0.0157:0.0217:0.329661:0.1:rs3813199
1   1162435 rs3766186   C   A   .   PASS    AF=0.1  ES:SE:LP:AF:ID  0.0157:0.022:0.322941:0.1:rs3766186
1   1165310 rs11260562  G   A   .   PASS    AF=0.052    ES:SE:LP:AF:ID  -0.0654:0.0295:1.57988:0.052:rs11260562
1   1211292 rs6685064   C   T   .   PASS    AF=0.1  ES:SE:LP:AF:ID  -0.0539:0.0254:1.4675:0.1:rs6685064
1   1462766 rs9439462   C   T   .   PASS    AF=0.042    ES:SE:LP:AF:ID  -0.0364:0.0357:0.511873:0.042:rs9439462
1   1477244 rs7290  T   C   .   PASS    AF=0.25 ES:SE:LP:AF:ID  0.0067:0.0142:0.195111:0.25:rs7290
1   1478153 rs3766180   T   C   .   PASS    AF=0.242    ES:SE:LP:AF:ID  0.007:0.0142:0.208309:0.242:rs3766180
1   1478180 rs3766178   T   C   .   PASS    AF=0.267    ES:SE:LP:AF:ID  0.0081:0.0142:0.244735:0.267:rs3766178
1   1479333 rs7533  A   G   .   PASS    AF=0.246    ES:SE:LP:AF:ID  0.0069:0.0142:0.203495:0.246:rs7533
1   1497201 rs3766169   A   C   .   PASS    AF=0.246    ES:SE:LP:AF:ID  0.0056:0.0142:0.158015:0.246:rs3766169
1   1499298 rs9439468   A   G   .   PASS    AF=0.31 ES:SE:LP:AF:ID  -0.0119:0.0136:0.417709:0.31:rs9439468
1   1500941 rs6603791   A   G   .   PASS    AF=0.3  ES:SE:LP:AF:ID  -0.0125:0.0136:0.445996:0.3:rs6603791
1   1505255 rs6603793   C   T   .   PASS    AF=0.3  ES:SE:LP:AF:ID  -0.0116:0.0136:0.405166:0.3:rs6603793
1   1509034 rs7520996   T   C   .   PASS    AF=0.28 ES:SE:LP:AF:ID  -0.0152:0.0141:0.549905:0.28:rs7520996
1   1510801 rs7519837   C   T   .   PASS    AF=0.292    ES:SE:LP:AF:ID  -0.0137:0.0141:0.479385:0.292:rs7519837
1   1706160 rs7531583   A   G   .   PASS    AF=0.783    ES:SE:LP:AF:ID  0.0073:0.0156:0.193413:0.783:rs7531583
1   1708801 rs12044597  A   G   .   PASS    AF=0.517    ES:SE:LP:AF:ID  -0.0005:0.0129:0.0146634:0.517:rs12044597
1   1721479 rs2272908   C   T   .   PASS    AF=0.517    ES:SE:LP:AF:ID  -0.0002:0.0129:0.00607904:0.517:rs2272908
1   1722932 rs3737628   C   T   .   PASS    AF=0.508    ES:SE:LP:AF:ID  -0.0008:0.0132:0.022505:0.508:rs3737628
1   1723031 rs9660180   G   A   .   PASS    AF=0.5  ES:SE:LP:AF:ID  -0.0012:0.0129:0.0334828:0.5:rs9660180
1   1748734 rs2180311   T   C   .   PASS    AF=0.517    ES:SE:LP:AF:ID  0.0007:0.0129:0.0180003:0.517:rs2180311
1   1759054 rs10907187  G   A   .   PASS    AF=0.275    ES:SE:LP:AF:ID  0.0074:0.0143:0.219467:0.275:rs10907187
1   1776269 rs4648727   C   A   .   PASS    AF=0.458    ES:SE:LP:AF:ID  -0.0028:0.0129:0.0818123:0.458:rs4648727
1   1778090 rs12126768  T   G   .   PASS    AF=0.186    ES:SE:LP:AF:ID  -0.0151:0.0171:0.423659:0.186:rs12126768
1   1778469 rs6687065   A   G   .   PASS    AF=0.517    ES:SE:LP:AF:ID  0.0005:0.0129:0.0142144:0.517:rs6687065
1   1783201 rs12402876  G   A   .   PASS    AF=0.275    ES:SE:LP:AF:ID  0.0077:0.0143:0.227752:0.275:rs12402876
1   1787378 rs12125422  G   A   .   PASS    AF=0.192    ES:SE:LP:AF:ID  -0.0162:0.0171:0.46382:0.192:rs12125422
1   1797947 rs9660106   A   G   .   PASS    AF=0.517    ES:SE:LP:AF:ID  0.0004:0.0129:0.0116194:0.517:rs9660106
1   1801034 rs4648592   G   A   .   PASS    AF=0.275    ES:SE:LP:AF:ID  0.008:0.0143:0.237772:0.275:rs4648592
1   1805391 rs10907193  G   A   .   PASS    AF=0.275    ES:SE:LP:AF:ID  0.0077:0.0143:0.230106:0.275:rs10907193
1   1810090 rs7525092   C   T   .   PASS    AF=0.275    ES:SE:LP:AF:ID  0.0077:0.0143:0.229074:0.275:rs7525092
1   1812688 rs6603803   A   G   .   PASS    AF=0.517    ES:SE:LP:AF:ID  0.0008:0.0129:0.0229627:0.517:rs6603803
1   1818129 rs16824526  A   C   .   PASS    AF=0.192    ES:SE:LP:AF:ID  -0.0168:0.0171:0.485187:0.192:rs16824526
1   1888193 rs3820011   C   A   .   PASS    AF=0.292    ES:SE:LP:AF:ID  -0.0042:0.0143:0.113622:0.292:rs3820011
1   2024064 rs2459994   C   T   .   PASS    AF=0.116    ES:SE:LP:AF:ID  0.0302:0.0194:0.922996:0.116:rs2459994
1   2027901 rs7513222   G   A   .   PASS    AF=0.292    ES:SE:LP:AF:ID  0.0156:0.0143:0.559878:0.292:rs7513222
1   2033256 rs908742    G   A   .   PASS    AF=0.339    ES:SE:LP:AF:ID  0.0029:0.0139:0.0771189:0.339:rs908742
1   2039719 rs1878752   G   A   .   PASS    AF=0.911    ES:SE:LP:AF:ID  0.0003:0.0197:0.00572685:0.911:rs1878752
1   2040763 rs4648805   G   A   .   PASS    AF=0.89 ES:SE:LP:AF:ID  0.0003:0.0197:0.00572685:0.89:rs4648805
1   2040898 rs4648807   T   C   .   PASS    AF=0.625    ES:SE:LP:AF:ID  0.0015:0.0133:0.039672:0.625:rs4648807
1   2040936 rs4648808   T   C   .   PASS    AF=0.89 ES:SE:LP:AF:ID  0.0005:0.0196:0.008641:0.89:rs4648808