{
"fileformat": "VCFv4.2",
"FILTER": "<ID=PASS,Description=\"All filters passed\">",
"FORMAT": "<ID=AF,Number=A,Type=Float,Description=\"Alternate allele frequency in the association study\">",
"FORMAT.1": "<ID=ES,Number=A,Type=Float,Description=\"Effect size estimate relative to the alternative allele\">",
"FORMAT.2": "<ID=EZ,Number=A,Type=Float,Description=\"Z-score provided if it was used to derive the EFFECT and SE fields\">",
"FORMAT.3": "<ID=ID,Number=1,Type=String,Description=\"Study variant identifier\">",
"FORMAT.4": "<ID=LP,Number=A,Type=Float,Description=\"-log10 p-value for effect estimate\">",
"FORMAT.5": "<ID=NC,Number=A,Type=Float,Description=\"Number of cases used to estimate genetic effect\">",
"FORMAT.6": "<ID=SE,Number=A,Type=Float,Description=\"Standard error of effect size estimate\">",
"FORMAT.7": "<ID=SI,Number=A,Type=Float,Description=\"Accuracy score of summary data imputation\">",
"FORMAT.8": "<ID=SS,Number=A,Type=Float,Description=\"Sample size used to estimate genetic effect\">",
"INFO": "<ID=AF,Number=A,Type=Float,Description=\"Allele Frequency\">",
"INFO.1": "<ID=ReverseComplementedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been reverse complemented in liftover since the mapping from the previous reference to the current one was on the negative strand.\">",
"INFO.2": "<ID=SwappedAlleles,Number=0,Type=Flag,Description=\"The REF and the ALT alleles have been swapped in liftover due to changes in the reference. It is possible that not all INFO annotations reflect this swap, and in the genotypes, only the GT, PL, and AD fields have been modified. You should check the TAGS_TO_REVERSE parameter that was used during the LiftOver to be sure.\">",
"META": "<ID=HarmonisedVariants,Number=1,Type=Integer,Description=\"Total number of harmonised variants\">",
"META.1": "<ID=StudyType,Number=1,Type=String,Description=\"Type of GWAS study [Continuous or CaseControl]\">",
"META.2": "<ID=SwitchedAlleles,Number=1,Type=Integer,Description=\"Total number of variants strand switched\">",
"META.3": "<ID=TotalCases,Number=1,Type=Integer,Description=\"Total number of cases in the association study\">",
"META.4": "<ID=TotalControls,Number=1,Type=Integer,Description=\"Total number of controls in the association study\">",
"META.5": "<ID=TotalVariants,Number=1,Type=Integer,Description=\"Total number of variants in input\">",
"META.6": "<ID=VariantsNotHarmonised,Number=1,Type=Integer,Description=\"Total number of variants that could not be harmonised\">",
"META.7": "<ID=VariantsNotRead,Number=1,Type=Integer,Description=\"Number of variants that could not be read\">",
"SAMPLE": "<ID=EBI-a-GCST000998,TotalVariants=2415020,VariantsNotRead=0,HarmonisedVariants=2415017,VariantsNotHarmonised=3,SwitchedAlleles=0,TotalControls=64762.0,TotalCases=22233.0,StudyType=CaseControl>",
"contig": "<ID=1,length=249250621>",
"contig.1": "<ID=2,length=243199373>",
"contig.2": "<ID=3,length=198022430>",
"contig.3": "<ID=4,length=191154276>",
"contig.4": "<ID=5,length=180915260>",
"contig.5": "<ID=6,length=171115067>",
"contig.6": "<ID=7,length=159138663>",
"contig.7": "<ID=8,length=146364022>",
"contig.8": "<ID=9,length=141213431>",
"contig.9": "<ID=10,length=135534747>",
"contig.10": "<ID=11,length=135006516>",
"contig.11": "<ID=12,length=133851895>",
"contig.12": "<ID=13,length=115169878>",
"contig.13": "<ID=14,length=107349540>",
"contig.14": "<ID=15,length=102531392>",
"contig.15": "<ID=16,length=90354753>",
"contig.16": "<ID=17,length=81195210>",
"contig.17": "<ID=18,length=78077248>",
"contig.18": "<ID=19,length=59128983>",
"contig.19": "<ID=20,length=63025520>",
"contig.20": "<ID=21,length=48129895>",
"contig.21": "<ID=22,length=51304566>",
"contig.22": "<ID=X,length=155270560>",
"contig.23": "<ID=Y,length=59373566>",
"contig.24": "<ID=MT,length=16569>",
"contig.25": "<ID=GL000207.1,length=4262>",
"contig.26": "<ID=GL000226.1,length=15008>",
"contig.27": "<ID=GL000229.1,length=19913>",
"contig.28": "<ID=GL000231.1,length=27386>",
"contig.29": "<ID=GL000210.1,length=27682>",
"contig.30": "<ID=GL000239.1,length=33824>",
"contig.31": "<ID=GL000235.1,length=34474>",
"contig.32": "<ID=GL000201.1,length=36148>",
"contig.33": "<ID=GL000247.1,length=36422>",
"contig.34": "<ID=GL000245.1,length=36651>",
"contig.35": "<ID=GL000197.1,length=37175>",
"contig.36": "<ID=GL000203.1,length=37498>",
"contig.37": "<ID=GL000246.1,length=38154>",
"contig.38": "<ID=GL000249.1,length=38502>",
"contig.39": "<ID=GL000196.1,length=38914>",
"contig.40": "<ID=GL000248.1,length=39786>",
"contig.41": "<ID=GL000244.1,length=39929>",
"contig.42": "<ID=GL000238.1,length=39939>",
"contig.43": "<ID=GL000202.1,length=40103>",
"contig.44": "<ID=GL000234.1,length=40531>",
"contig.45": "<ID=GL000232.1,length=40652>",
"contig.46": "<ID=GL000206.1,length=41001>",
"contig.47": "<ID=GL000240.1,length=41933>",
"contig.48": "<ID=GL000236.1,length=41934>",
"contig.49": "<ID=GL000241.1,length=42152>",
"contig.50": "<ID=GL000243.1,length=43341>",
"contig.51": "<ID=GL000242.1,length=43523>",
"contig.52": "<ID=GL000230.1,length=43691>",
"contig.53": "<ID=GL000237.1,length=45867>",
"contig.54": "<ID=GL000233.1,length=45941>",
"contig.55": "<ID=GL000204.1,length=81310>",
"contig.56": "<ID=GL000198.1,length=90085>",
"contig.57": "<ID=GL000208.1,length=92689>",
"contig.58": "<ID=GL000191.1,length=106433>",
"contig.59": "<ID=GL000227.1,length=128374>",
"contig.60": "<ID=GL000228.1,length=129120>",
"contig.61": "<ID=GL000214.1,length=137718>",
"contig.62": "<ID=GL000221.1,length=155397>",
"contig.63": "<ID=GL000209.1,length=159169>",
"contig.64": "<ID=GL000218.1,length=161147>",
"contig.65": "<ID=GL000220.1,length=161802>",
"contig.66": "<ID=GL000213.1,length=164239>",
"contig.67": "<ID=GL000211.1,length=166566>",
"contig.68": "<ID=GL000199.1,length=169874>",
"contig.69": "<ID=GL000217.1,length=172149>",
"contig.70": "<ID=GL000216.1,length=172294>",
"contig.71": "<ID=GL000215.1,length=172545>",
"contig.72": "<ID=GL000205.1,length=174588>",
"contig.73": "<ID=GL000219.1,length=179198>",
"contig.74": "<ID=GL000224.1,length=179693>",
"contig.75": "<ID=GL000223.1,length=180455>",
"contig.76": "<ID=GL000195.1,length=182896>",
"contig.77": "<ID=GL000212.1,length=186858>",
"contig.78": "<ID=GL000222.1,length=186861>",
"contig.79": "<ID=GL000200.1,length=187035>",
"contig.80": "<ID=GL000193.1,length=189789>",
"contig.81": "<ID=GL000194.1,length=191469>",
"contig.82": "<ID=GL000225.1,length=211173>",
"contig.83": "<ID=GL000192.1,length=547496>",
"file_date": "2019-10-27T07:18:47.693673",
"gwas_harmonisation_command": "--json /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/EBI-a-GCST000998_data.json --ref /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/hg38/hg38.fa; 1.1.1",
"reference": "file:/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/QC/genomes/b37/human_g1k_v37.fasta",
"bcftools_annotateVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_annotateCommand": "annotate -a /mnt/storage/home/gh13047/mr-eve/vcf-reference-datasets/dbsnp/dbsnp.v153.b37.vcf.gz -c ID -o /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/EBI-a-GCST000998.vcf.gz -O z /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/EBI-a-GCST000998_data.vcf.gz; Date=Sun Oct 27 07:22:55 2019",
"bcftools_viewVersion": "1.9-74-g6af271c+htslib-1.9-64-g226b4a8",
"bcftools_viewCommand": "view -h /mnt/storage/private/mrcieu/research/scratch/IGD/data/public/ebi-a-GCST000998/ebi-a-GCST000998.vcf.gz; Date=Sun May 10 14:11:07 2020"
}
*********************************************************************
* LD Score Regression (LDSC)
* Version 1.0.1
* (C) 2014-2019 Brendan Bulik-Sullivan and Hilary Finucane
* Broad Institute of MIT and Harvard / MIT Department of Mathematics
* GNU General Public License v3
*********************************************************************
Call:
./ldsc.py \
--h2 /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/EBI-a-GCST000998.vcf.gz \
--ref-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/ \
--out /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/ldsc.txt \
--snplist /data/ref/snplist.gz \
--w-ld-chr /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/reference/eur_w_ld_chr/
Beginning analysis at Sun Oct 27 07:45:40 2019
Reading summary statistics from /mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/processed/EBI-a-GCST000998/EBI-a-GCST000998.vcf.gz ...
and extracting SNPs specified in /data/ref/snplist.gz ...
Traceback (most recent call last):
File "./ldsc/ldsc.py", line 647, in <module>
sumstats.estimate_h2(args, log)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 330, in estimate_h2
args, log, args.h2)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 246, in _read_ld_sumstats
sumstats = _read_sumstats(args, log, fh, alleles=alleles, dropna=dropna)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/sumstats.py", line 165, in _read_sumstats
sumstats = ps.sumstats(fh, alleles=alleles, dropna=dropna, slh=args.snplist)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 85, in sumstats
x = read_vcf(fh, alleles, slh)
File "/mnt/storage/private/mrcieu/research/scratch/IGD/data/dev/ebi_gwas_import/igd-hpc-pipeline/resources/gwas_processing/ldsc/ldscore/parse.py", line 161, in read_vcf
with gzip.open(slh) as f:
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 34, in open
return GzipFile(filename, mode, compresslevel)
File "/mnt/storage/home/gh13047/mr-eve/conda/ldsc/lib/python2.7/gzip.py", line 94, in __init__
fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
IOError: [Errno 2] No such file or directory: '/data/ref/snplist.gz'
Analysis finished at Sun Oct 27 07:45:56 2019
Total time elapsed: 15.75s
{
"af_correlation": 0.9212,
"inflation_factor": 1.0966,
"mean_EFFECT": 0,
"n": "-Inf",
"n_snps": 2415017,
"n_clumped_hits": 15,
"n_p_sig": 159,
"n_mono": 0,
"n_ns": 0,
"n_mac": 0,
"is_snpid_unique": false,
"n_miss_EFFECT": 0,
"n_miss_SE": 0,
"n_miss_PVAL": 0,
"n_miss_AF": 0,
"n_miss_AF_reference": 18814,
"n_est": "NA",
"ratio_se_n": "NA",
"mean_diff": "NaN",
"ratio_diff": "NaN",
"sd_y_est1": "NaN",
"sd_y_est2": "NA",
"r2_sum1": 0,
"r2_sum2": 0,
"r2_sum3": 0,
"r2_sum4": 0,
"ldsc_nsnp_merge_refpanel_ld": "NA",
"ldsc_nsnp_merge_regression_ld": "NA",
"ldsc_observed_scale_h2_beta": "NA",
"ldsc_observed_scale_h2_se": "NA",
"ldsc_intercept_beta": "NA",
"ldsc_intercept_se": "NA",
"ldsc_lambda_gc": "NA",
"ldsc_mean_chisq": "NA",
"ldsc_ratio": "NA"
}
name | value |
---|---|
af_correlation | FALSE |
inflation_factor | FALSE |
n | TRUE |
is_snpid_non_unique | TRUE |
mean_EFFECT_nonfinite | FALSE |
mean_EFFECT_05 | FALSE |
mean_EFFECT_01 | FALSE |
mean_chisq | TRUE |
n_p_sig | FALSE |
miss_EFFECT | FALSE |
miss_SE | FALSE |
miss_PVAL | FALSE |
ldsc_ratio | TRUE |
ldsc_intercept_beta | TRUE |
n_clumped_hits | FALSE |
r2_sum1 | FALSE |
r2_sum2 | FALSE |
r2_sum3 | FALSE |
r2_sum4 | FALSE |
General metrics
af_correlation
: Correlation coefficient between AF
and AF_reference
.inflation_factor
(lambda
): Genomic inflation factor.mean_EFFECT
: Mean of EFFECT
size.n
: Maximum value of reported sample size across all SNPs, \(n\).n_clumped_hits
: Number of clumped hits.n_snps
: Number of SNPsn_p_sig
: Number of SNPs with pvalue below 5e-8
.n_mono
: Number of monomorphic (MAF == 1
or MAF == 0
) SNPs.n_ns
: Number of SNPs with nonsense values:
A, C, G or T
.< 0
or > 1
.<= 0
or = Infinity
).< 0
or > 1
.n_mac
: Number of cases where MAC
(\(2 \times N \times MAF\)) is less than 6
.is_snpid_unique
: true
if the combination of ID
REF
ALT
is unique and therefore no duplication in snpid.n_miss_<*>
: Number of NA
observations for <*>
column.se_n metrics
n_est
: Estimated sample size value, \(\widehat{n}\).ratio_se_n
: \(\texttt{ratio_se_n} = \frac{\sqrt{\widehat{n}}}{\sqrt{n}}\). We expect ratio_se_n
to be 1. When it is not 1, it implies that the trait did not have a variance of 1, the reported sample size is wrong, or that the SNP-level effective sample sizes differ markedly from the reported sample size.mean_diff
: \(\texttt{mean_diff} = \sum_{j} \frac{\widehat{\beta_j^{std}} - \beta_j}{\texttt{n_snps}}\), mean difference between the standardised beta, predicted from P-values, and the observed beta. The difference should be very close to zero if trait has a variance of 1.
ratio_diff
: \(\texttt{ratio_diff} = |\frac{\texttt{mean_diff}}{\texttt{mean_diff2}}|\), absolute ratio between the mean of diff
and the mean of diff2
(expected difference between the standardised beta predicted from P-values, and the standardised beta derived from the observed beta divided by the predicted SD; NOT reported). The ratio should be close to 1. If different from 1, then implies that the betas are not in a standard deviation scale.
sd_y_est1
: The standard deviation for the trait inferred from the reported sample size, median standard errors for the SNP-trait assocations and SNP variances.
sd_y_est2
: The standard deviation for the trait inferred from the reported sample size, Z statistics for the SNP-trait effects (beta/se) and allele frequency.
r2 metrics
Sum of variance explained, calculated from the clumped top hits sample.
r2_sum<*>
: r2
statistics under various assumptions
1
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var1}}}\), \(\texttt{var1} = 1\).2
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var2}}}\), \(\texttt{var2} = {\widehat{\texttt{sd1}}_{y}}^2\),3
: \(r^2 = \sum_j{\frac{2 \times \beta_j^2 \times {MAF}_j \times (1 - {MAF}_j)}{\texttt{var3}}}\), \(\texttt{var3} = {\widehat{\texttt{sd2}}_{y}}^2\),4
: \(r^2 = \sum_j{\frac{F_j}{F_j + n - 2}}\), \(F = \frac{\beta_j^2}{{se}_j^2}\).LDSC metrics
Metrics from LD regression
ldsc_nsnp_merge_refpanel_ld
: Number of remaining SNPs after merging with reference panel LD.ldsc_nsnp_merge_regression_ld
: Number of remaining SNPs after merging with regression SNP LD.ldsc_observed_scale_h2_{beta,se}
Coefficient value and SE for total observed scale h2.ldsc_intercept_{beta,se}
: Coefficient value and SE for intercept. Intercept is expected to be 1.ldsc_lambda_gc
: Lambda GC statistics.ldsc_mean_chisq
: Mean \(\chi^2\) statistics.ldsc_ratio
: \(\frac{\texttt{ldsc_intercept_beta} - 1}{\texttt{ldsc_mean_chisq} - 1}\), the proportion of the inflation in the mean \(\chi^2\) that the LD Score regression intercepts ascribes to causes other than polygenic heritability. The value of ratio should be close to zero, though in practice values of 0.1-0.2 are not uncommon, probably due to sample/reference LD Score mismatch or model misspecification (e.g., low LD variants have slightly higher \(h^2\) per SNP).Flags
When a metric needs attention, the flag should return TRUE.
af_correlation
: abs(af_correlation)
< 0.7.inflation_factor
: inflation_factor
> 1.2.n
: n
(max reported sample size) < 10000.is_snpid_non_unique
: NOT is_snpid_unique
.mean_EFFECT_nonfinite
: mean(EFFECT)
is NA
, NaN
, or Inf
.mean_EFFECT_05
: abs(mean(EFFECT))
> 0.5.mean_EFFECT_01
: abs(mean(EFFECT))
> 0.1.mean_chisq
: ldsc_mean_chisq
> 1.3 or ldsc_mean_chisq
< 0.7.n_p_sig
: n_p_sig
> 1000.miss_<*>
: n_miss_<*>
/ n_snps
> 0.01.ldsc_ratio
: ldsc_ratio
> 0.5ldsc_intercept_beta
: ldsc_intercept_beta
> 1.5n_clumped_hits
: n_clumped_hits
> 1000r2_sum<*>
: r2_sum<*>
> 0.5Plots
skim_type | skim_variable | n_missing | complete_rate | character.min | character.max | character.empty | character.n_unique | character.whitespace | logical.mean | logical.count | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
character | ID | 0 | 1.0000000 | 3 | 42 | 0 | 2408875 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | REF | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
character | ALT | 0 | 1.0000000 | 1 | 1 | 0 | 4 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
logical | N | 2408881 | 0.0000000 | NA | NA | NA | NA | NA | NaN | : | NA | NA | NA | NA | NA | NA | NA | NA |
numeric | CHROM | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 8.574173e+00 | 5.648785e+00 | 1.00000e+00 | 4.000000e+00 | 8.000000e+00 | 1.200000e+01 | 2.300000e+01 | ▇▅▅▂▂ |
numeric | POS | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 7.890547e+07 | 5.563996e+07 | 1.15230e+04 | 3.274525e+07 | 7.037483e+07 | 1.143482e+08 | 2.492190e+08 | ▇▇▅▂▁ |
numeric | EFFECT | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.190000e-05 | 2.776550e-02 | -1.10961e+00 | -1.413890e-02 | -1.052000e-04 | 1.391550e-02 | 1.086030e+00 | ▁▁▇▁▁ |
numeric | SE | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 2.298130e-02 | 1.417830e-02 | 1.36136e-02 | 1.509380e-02 | 1.804230e-02 | 2.471860e-02 | 5.506900e-01 | ▇▁▁▁▁ |
numeric | PVAL | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.845573e-01 | 2.938421e-01 | 0.00000e+00 | 2.261674e-01 | 4.799876e-01 | 7.397773e-01 | 9.999996e-01 | ▇▇▇▇▇ |
numeric | PVAL_ztest | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 4.845573e-01 | 2.938421e-01 | 0.00000e+00 | 2.261676e-01 | 4.799876e-01 | 7.397764e-01 | 9.999996e-01 | ▇▇▇▇▇ |
numeric | AF | 0 | 1.0000000 | NA | NA | NA | NA | NA | NA | NA | 3.644524e-01 | 2.633891e-01 | 1.00000e-02 | 1.376580e-01 | 3.022260e-01 | 5.567510e-01 | 9.900000e-01 | ▇▅▃▃▂ |
numeric | AF_reference | 18814 | 0.9921897 | NA | NA | NA | NA | NA | NA | NA | 3.632832e-01 | 2.544372e-01 | 1.99700e-04 | 1.493610e-01 | 3.021170e-01 | 5.469250e-01 | 1.000000e+00 | ▇▆▅▃▂ |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 721290 | rs12565286 | G | C | 0.1282010 | 0.0695073 | 0.0651208 | 0.0651212 | 0.0538073 | 0.0371406 | NA |
1 | 723819 | rs11804171 | T | A | 0.1297870 | 0.0698828 | 0.0632820 | 0.0632814 | 0.0540315 | 0.1345850 | NA |
1 | 752566 | rs3094315 | G | A | -0.0016609 | 0.0291187 | 0.9545153 | 0.9545142 | 0.8249000 | 0.7182510 | NA |
1 | 754192 | rs3131968 | A | G | -0.0289617 | 0.0314537 | 0.3571692 | 0.3571692 | 0.7698700 | 0.6785140 | NA |
1 | 775659 | rs2905035 | A | G | -0.0040285 | 0.0272131 | 0.8823145 | 0.8823149 | 0.8198740 | 0.7450080 | NA |
1 | 777122 | rs2980319 | A | T | -0.0009125 | 0.0270433 | 0.9730835 | 0.9730827 | 0.8205390 | 0.7472040 | NA |
1 | 779322 | rs4040617 | A | G | -0.0017451 | 0.0268361 | 0.9481510 | 0.9481516 | 0.1365300 | 0.2264380 | NA |
1 | 780785 | rs2977612 | T | A | -0.0000365 | 0.0271406 | 0.9989267 | 0.9989270 | 0.8634140 | 0.6693290 | NA |
1 | 785050 | rs2905062 | G | A | 0.0002458 | 0.0270487 | 0.9927509 | 0.9927495 | 0.8619550 | 0.6269970 | NA |
1 | 785989 | rs2980300 | T | C | 0.0054738 | 0.0259561 | 0.8329753 | 0.8329756 | 0.8537800 | 0.6269970 | NA |
CHROM | POS | ID | REF | ALT | EFFECT | SE | PVAL | PVAL_ztest | AF | AF_reference | N |
---|---|---|---|---|---|---|---|---|---|---|---|
22 | 51163138 | rs715586 | C | T | -0.0094937 | 0.0231196 | 0.6813402 | 0.6813407 | 0.1594360 | 0.0902556 | NA |
22 | 51165664 | rs8137951 | G | A | 0.0125211 | 0.0182524 | 0.4927118 | 0.4927147 | 0.3178670 | 0.4063500 | NA |
22 | 51171693 | rs756638 | G | A | -0.0486490 | 0.0248341 | 0.0501176 | 0.0501175 | 0.2416790 | 0.3049120 | NA |
22 | 51175626 | rs3810648 | A | G | 0.0072231 | 0.0345634 | 0.8344619 | 0.8344629 | 0.0531682 | 0.1084270 | NA |
22 | 51178090 | rs2285395 | G | A | -0.0070760 | 0.0377561 | 0.8513374 | 0.8513365 | 0.0834911 | 0.0666933 | NA |
22 | 51196164 | rs8136603 | A | T | -0.0258867 | 0.0548093 | 0.6367090 | 0.6367092 | 0.0434938 | 0.1427720 | NA |
22 | 51222100 | rs114553188 | G | T | -0.0301543 | 0.0550702 | 0.5839935 | 0.5839933 | 0.0472308 | 0.0880591 | NA |
22 | 51223637 | rs375798137 | G | A | -0.0297975 | 0.0551675 | 0.5891081 | 0.5891089 | 0.0469412 | 0.0788738 | NA |
23 | 91415872 | rs6562597 | G | A | 0.0540302 | 0.0516399 | 0.2954282 | 0.2954282 | 0.0192669 | 0.0021192 | NA |
23 | 118495837 | rs12882977 | G | A | -0.0037640 | 0.0140319 | 0.7885078 | 0.7885100 | 0.5037110 | 0.2307280 | NA |
1 721290 rs12565286 G C . PASS AF=0.0538073 ES:SE:LP:AF:ID 0.128201:0.0695073:1.18628:0.0538073:rs12565286
1 723819 rs11804171 T A . PASS AF=0.0540315 ES:SE:LP:AF:ID 0.129787:0.0698828:1.19872:0.0540315:rs11804171
1 752566 rs3094315 G A . PASS AF=0.8249 ES:SE:LP:AF:ID -0.0016609:0.0291187:0.0202171:0.8249:rs3094315
1 754192 rs3131968 A G . PASS AF=0.76987 ES:SE:LP:AF:ID -0.0289617:0.0314537:0.447126:0.76987:rs3131968
1 775659 rs2905035 A G . PASS AF=0.819874 ES:SE:LP:AF:ID -0.0040285:0.0272131:0.0543766:0.819874:rs2905035
1 777122 rs2980319 A T . PASS AF=0.820539 ES:SE:LP:AF:ID -0.0009125:0.0270433:0.0118499:0.820539:rs2980319
1 779322 rs4040617 A G . PASS AF=0.13653 ES:SE:LP:AF:ID -0.0017451:0.0268361:0.0231225:0.13653:rs4040617
1 780785 rs2977612 T A . PASS AF=0.863414 ES:SE:LP:AF:ID -3.65e-05:0.0271406:0.000466379:0.863414:rs2977612
1 785050 rs2905062 G A . PASS AF=0.861955 ES:SE:LP:AF:ID 0.0002458:0.0270487:0.00315971:0.861955:rs2905062
1 785989 rs2980300 T C . PASS AF=0.85378 ES:SE:LP:AF:ID 0.0054738:0.0259561:0.0793679:0.85378:rs2980300
1 798959 rs11240777 G A . PASS AF=0.206126 ES:SE:LP:AF:ID 0.008975:0.0302654:0.115309:0.206126:rs11240777
1 990380 rs3121561 C T . PASS AF=0.295 ES:SE:LP:AF:ID 0.028:0.0329999:0.402123:0.295:rs3121561
1 998501 rs3813193 G C . PASS AF=0.182651 ES:SE:LP:AF:ID 0.0034016:0.0303734:0.0405632:0.182651:rs3813193
1 1003629 rs4075116 C T . PASS AF=0.742152 ES:SE:LP:AF:ID -0.0187703:0.0217113:0.41196:0.742152:rs4075116
1 1005806 rs3934834 C T . PASS AF=0.159137 ES:SE:LP:AF:ID -0.0070263:0.0292219:0.0915229:0.159137:rs3934834
1 1017170 rs3766193 C G . PASS AF=0.550892 ES:SE:LP:AF:ID -0.0157586:0.0210754:0.342345:0.550892:rs3766193
1 1017197 rs3766192 C T . PASS AF=0.561968 ES:SE:LP:AF:ID -0.0051995:0.0283805:0.0682184:0.561968:rs3766192
1 1017587 rs3766191 C T . PASS AF=0.144423 ES:SE:LP:AF:ID 0.0099465:0.0314343:0.123965:0.144423:rs3766191
1 1018562 rs9442371 C T . PASS AF=0.573923 ES:SE:LP:AF:ID -0.011991:0.0182782:0.290895:0.573923:rs9442371
1 1018704 rs9442372 A G . PASS AF=0.57237 ES:SE:LP:AF:ID -0.0130313:0.0181211:0.325997:0.57237:rs9442372
1 1021346 rs10907177 A G . PASS AF=0.143209 ES:SE:LP:AF:ID 0.0180932:0.0324983:0.238296:0.143209:rs10907177
1 1021415 rs3737728 A G . PASS AF=0.722623 ES:SE:LP:AF:ID -0.0074473:0.0223225:0.131552:0.722623:rs3737728
1 1021583 rs10907178 A C . PASS AF=0.142127 ES:SE:LP:AF:ID 0.0197099:0.0325366:0.263871:0.142127:rs10907178
1 1021695 rs9442398 A G . PASS AF=0.729993 ES:SE:LP:AF:ID -0.0036201:0.0235499:0.0565891:0.729993:rs9442398
1 1022037 rs6701114 C T . PASS AF=0.5547 ES:SE:LP:AF:ID -0.0185:0.0519:0.141764:0.5547:rs6701114
1 1026707 rs4074137 C A . PASS AF=0.626 ES:SE:LP:AF:ID -0.046:0.0252999:1.16093:0.626:rs4074137
1 1030565 rs6687776 C T . PASS AF=0.144064 ES:SE:LP:AF:ID 0.0497435:0.0281564:1.11193:0.144064:rs6687776
1 1030633 rs6678318 G A . PASS AF=0.142872 ES:SE:LP:AF:ID 0.0509073:0.0282022:1.14836:0.142872:rs6678318
1 1031540 rs9651273 A G . PASS AF=0.747557 ES:SE:LP:AF:ID -0.014647:0.0248585:0.255145:0.747557:rs9651273
1 1036959 rs11579015 T C . PASS AF=0.0898438 ES:SE:LP:AF:ID 0.0532598:0.0296054:1.14254:0.0898438:rs11579015
1 1040026 rs6671356 T C . PASS AF=0.129024 ES:SE:LP:AF:ID 0.0409805:0.0289901:0.802777:0.129024:rs6671356
1 1046164 rs6666280 C T . PASS AF=0.119357 ES:SE:LP:AF:ID 0.0437258:0.0260782:1.02874:0.119357:rs6666280
1 1048955 rs4970405 A G . PASS AF=0.0942422 ES:SE:LP:AF:ID 0.0707107:0.0283715:1.89649:0.0942422:rs4970405
1 1049950 rs12726255 A G . PASS AF=0.12066 ES:SE:LP:AF:ID 0.0488419:0.0275424:1.1182:0.12066:rs12726255
1 1053452 rs4970409 G A . PASS AF=0.0907357 ES:SE:LP:AF:ID 0.0510508:0.0291704:1.09635:0.0907357:rs4970409
1 1060174 rs7548798 C T . PASS AF=0.322014 ES:SE:LP:AF:ID 0.0331473:0.0290897:0.594312:0.322014:rs7548798
1 1060235 rs7540009 G A . PASS AF=0.035 ES:SE:LP:AF:ID -0.011:0.0626997:0.0651308:0.035:rs7540009
1 1060608 rs17160824 G A . PASS AF=0.0974642 ES:SE:LP:AF:ID 0.0511532:0.0293633:1.08887:0.0974642:rs17160824
1 1061115 rs17160826 T C . PASS AF=0.089626 ES:SE:LP:AF:ID 0.0505149:0.029373:1.06817:0.089626:rs17160826
1 1061152 rs12748370 T C . PASS AF=0.0919812 ES:SE:LP:AF:ID 0.0441971:0.0300373:0.850224:0.0919812:rs12748370
1 1061166 rs11807848 T C . PASS AF=0.401254 ES:SE:LP:AF:ID 0.0674:0.0257956:2.04676:0.401254:rs11807848
1 1062015 rs9659914 C T . PASS AF=0.034 ES:SE:LP:AF:ID -0.012:0.0648997:0.0688947:0.034:rs9659914
1 1062638 rs9442373 C A . PASS AF=0.557813 ES:SE:LP:AF:ID -0.0657354:0.0247604:2.1005:0.557813:rs9442373
1 1064535 rs6682475 G C . PASS AF=0.73 ES:SE:LP:AF:ID -0.027:0.0340999:0.368068:0.73:rs6682475
1 1064979 rs2298217 C T . PASS AF=0.126426 ES:SE:LP:AF:ID 0.0435369:0.0292475:0.864547:0.126426:rs2298217
1 1077064 rs4970357 C A . PASS AF=0.918735 ES:SE:LP:AF:ID 0.0117037:0.0462911:0.0966923:0.918735:rs4970357
1 1079198 rs11260603 T C . PASS AF=0.227 ES:SE:LP:AF:ID 0.031:0.0329999:0.459012:0.227:rs11260603
1 1087683 rs9442380 T C . PASS AF=0.914628 ES:SE:LP:AF:ID 0.007653:0.0364682:0.0789475:0.914628:rs9442380
1 1089262 rs4970358 A G . PASS AF=0.954487 ES:SE:LP:AF:ID 0.0374554:0.0554406:0.301641:0.954487:rs4970358
1 1094738 rs4970362 A G . PASS AF=0.615243 ES:SE:LP:AF:ID -0.0058565:0.0217067:0.103853:0.615243:rs4970362